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Abstract 
 

The increased interest in the relationship between human microbiome and disease has 

contributed to the development of lower-cost sequencing techniques and software for the analysis of 

metagenomes. Several studies revealed a relationship between the severity of the disease Atopic 

Dermatitis and the bacterium Staphylococcus aureus. This thesis makes use of a metagenomics-

driven approach to determine the extent to which this interaction affects the composition of the total 

microbiome of the human skin. To determine whether microbial community structure shifts according 

to higher S. aureus abundance in the skin microbiome, an in silico survey was performed on 183 

samples representing various degrees of S. aureus incidence. Principal Coordinates Analysis (PCoA), 

revealed, in general, significant dissimilarities for skin samples with different percentage values of S. 

aureus and from different body sites, namely Volar Forearm, Antecubital and Popliteal 

creases. Propionibacteirum acnes, Corynebacterium sp., Staphylococcus sp. and Staphylococcus 

succinus were revealed to be among the most responsive taxa to S. aureus incidence regardless of 

skin location. This study revealed a thus far unknown, positive correlation between S. aureus and S. 

succninus abundances in the skin microbiome. Genome-wide analyses performed in silico revealed 

that, although these species possess several genes in common, there are significant differences in the 

number and types of genes involved in virulence, disease and defense, suggesting similar 

physiological aptitude along with divergent virulence strategies adopted by both species to dwell in the 

human skin microbiome. 

  
 
Keywords: Metagenomics, Atopic Dermatitis, Human Skin Microbiome, Staphylococcus aureus, 
Staphylococcus succinus.  
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Resumo 

O aumento do interesse na relação entre o microbioma humano e doenças contribuiu ao 

desenvolvimento de técnicas de sequenciamento de baixo custo e softwares para a análise de 

metagenomas. Vários estudos revelaram uma relação entre a gravidade da doença Dermatite Atópica 

e a bactéria Staphylococcus aureus. Consequentemente, foi proposto, nesta tese, provar essa 

relação com base na análise metagenômica. Para investigar como a estrutura da comunidade 

microbiana muda em função da maior abundância de S. aureus no microbioma da pele, uma 

pesquisa in silico foi realizada em 183 amostras com vários graus de incidência de S. aureus. Com 

recurso à Análise de Coordenadas Principais (PCoA), revelaram-se semelhanças entre o microbioma 

das amostras de acordo com o valor percentual de S. aureus e o local de origem da amostra: 

antebraço, vincos antecubital e poplíteos. Em geral, foram reveladas dissimilaridades significativas 

entre os locais e entre amostras com diferentes percentagens de S. aureus. Os taxa microbianos 

mais responsivos ao aumento da abundância de S. aureus foram Propionibacterium acnes, 

Corynebacterium sp., Staphylococcus sp. e Staphylococcus succinus, independentemente da 

localização. Verificou-se a existência de uma correlação positiva entre as abundâncias de S. 

aureus e S. succninus em todas as amostras. Investigações genómicas determinaram que, embora 

estas espécies possuam vários genes em comum, existem diferenças significativas entre o número 

de genes envolvidos em virulência, doença e defesa. Isto sugere semelhante aptidão fisiológica, 

porém mecanismos de virulência distintos, adoptados por estas espécies no processo de colonização 

da pele. 

	
 

Palavras-Chave: Metagenómica, Dermatite Atópica, Microbioma da Pele Humana, Staphylococcus 

aureus, Staphylococcus succinus.  
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1. Introduction 

1.1 Microbiome and Metagenome 

1.1.1 Microbiome 

Microbiome is the assembly of all microorganisms (bacteria, archaea, eurkaryotes, and 

viruses), their genome (i.e., genes) and the surrounding environmental conditions in any given site 

(Marchesi & Ravel, 2015). 

There is still little understanding on the community dynamics, the interactions between 

microbes, their hosts and their surrounding environment, and about microbial functions in most 

microhabitats on Earth, even though steep improvements have been made in recent years with the 

help of DNA sequencing technologies. The mix of advances in DNA/RNA, proteins, metabolite 

analytical platforms and computing technologies has changed the way in which microbial community 

analysis is performed (Alivisatos et al., 2015), usually with highly complex datasets generated which 

demand the development of hi-end data processing pipelines and the creation of novel methodology 

and terminology to define different and diverse objects of study, such as “microbiomes”, 

“metagenomes” and “operational taxonomic units”, to name a few terms that have recently emerged. 

These new advances in technology permit a faster characterization of microbial samples. However, it 

is still much more left to comprehend (Martiny et al., 2015). 

Over the past years, the microbiome and its role in health and disease has become an 

essential focus in present research. It has exposed how importantly intertwined we are with our 

microbial passengers. Microbiomes can impact our health in many ways, influencing not only our 

metabolism but also mental and skin health. Some diseases may cause alterations to the microbiome 

such as allergies, asthma, cardiovascular diseases and cancer (Mulcahy-O’Grady & Workentine, 

2016). 

Studies of bacterial communities within the human body have found these communities to be 

far more diverse than it was previously thought (Fierer et al., 2008). In fact, this is true for both host-

associated communities, including the microbiomes of nearly all plants and animals, and for all sorts of 

habitats, from low to high latitudes (Teixeira et al., 2010) (Gonzalez et al., 2011) (Hacquard et al., 

2015). 

1.1.2 Metagenome 

Metagenome is the gathering of genomes and genes out of members in the microbiota 

(Marchesi & Ravel, 2015). 

The studies of metagenomes have gained importance in the past years	due to its usefulness 

in search of the properties of bacterial communities (Cho & Blaser, 2012). They have brought insight 

into the microbial communities regarding different environments such as aquatic ecosystems, human 
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skin and others. Several new tools were developed in order to understand the taxonomic composition 

of metagenomes (Lindgreen et al., 2016). 

1.2 The Human Microbiome 

Studies of the diversity of the human microbiome begun with Antonie van Leewenhoek during 

the 1680s, when he discovered that, when comparing his oral and fecal microbiota, there were 

differences between the samples depending on its microenvironment and health and disease state (K 

Ursell et al., 2013). 

Defining the human microbiome has brought some complications due to earlier confusions on 

the terminology. In an anthropocentric perspective, microbiota refers to the microbial taxa associated 

with humans whereas the microbiome has been regarded elsewhere as the agglomeration of these 

microbes and their genes (K Ursell et al., 2013). Nowadays, consensus exists concerning the common 

use of the terms “microbiota” and “microbiome” as the sum of all microorganisms living in a particular 

site or sample, be it of human origin or not, while the pool of genomes present in any given 

microbiome is usually referred to as “metagenome”.  

The human body contains somatic cells and symbiotic species, such as bacteria, fungi, 

viruses, protists, archaea and other microscopic organisms. This group is altogether described as the 

human microbiome, the agglomeration of all the microbes that live in the human body (Rivera-Amill, 

2016) (Costello et al,. 2012). 

Understanding and identifying the dominant and rare microbial community members, and the 

level of species diversity and richness in human body habitats is a subject of extreme relevance. This 

type of information will allow a better understanding of microbial diversity and stability across space 

and time in the human body as wel as their roles in the microbial community (Li et al., 2013) 

(Kuczynski et al., 2010). Our lifecycle stages, cultural settings, various body habitats and the 

variations in the human microbiome are still poorly explored (Caporaso et al., 2011). However, 

nowadays, there are already some insights into the human microbiome, including novel and emerging 

perspectives on the majority of so-far unculturable microorganisms that inhabit our body. These novel 

insights have been primarily enabled through the use of recently-developed, next generation 

sequencing technologies and hi-end bioinformatic pipelines that allow the processing of large amounts 

of data at ever-increasing speed (see below). 

The majority of people share a small percentage of microbial species in the gut, oral and 

genital communities. A colossal diversity is found between samples taken from the same habitat in the 

same person. Even though each individual is unique so is its body sites, and the diversity of microbial 

communities in each site is usually large (Kuczynski et al., 2011). For example, both men and women 

hands have different numbers of species-level phylotypes (Kuczynski et al., 2010). 

There is an interesting dynamic between the human microbiota and the environment. Human 

microbes flow in every surface that we have contact with everyday. Studies show that human 

fingertips can pass on microbes to keyboards, and that these communities are one example of what 

differentiates individuals. Another interesting fact is that the microbes that come from the ingestion of 

food, may be giving us an individual microbiome with “new genes to digest new foods” (K Ursell et 
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al.,2013). 

 Even though it is known that microbes are present all around the human body, there is still 

little information on what role they play in our health. This has become particularly more interesting to 

study since microbial dysbioses, the disruption of normal microbial community structure, is linked with 

several human diseases (Gevers et al., 2012). The diversity but also the abundance of microbial 

members is essential to human health and disease, because some disorders are linked to alterations 

in host-associated microbial communities such as malnutrition, inflammatory diseases and obesity 

(Costello et al., 2012). Improvements in sequencing technologies have allowed carrying out large-

scale studies of microbial communities, which will help to answer the question of what constitutes a 

healthy human microbiome, characterize the variability among different humans and to provide 

guidelines to the study of microbes linked to specific diseases (Hamady, 2009) (Gevers et al., 2012). 

Regardless of extensive variations in methodologies, the characterization of the taxonomic but also 

functional characteristics in the human microbiome can help to understand the “normal” composition of 

microbial symbionts plus the connection of microbial communities and human diseases (Kuczynski et 

al., 2011). 

Diseases, drug interactions and our own metabolism are affected by the human microbiome 

(Kuczynski et al., 2011). Therefore, in congruence with this knowledge, there are some studies made 

on human microbiome that disclose the fact that healthy individuals also have different microbes in 

different habitats (Consortium, 2013). However, this diversity is still difficult to explain, even though 

factors such as the environment, diet, genetics and microbial exposure could be involved, the human 

body could be seen as an ecosystem, and therefore human health is a result of what we do with our 

ecosystem (Consortium, 2013) (Costello et al., 2012). 

Although there is already some knowledge about the human microbiome, many questions still 

remain to be answered adequately for several human microniches, such as “how many species live in 

a given body site?” (Methé et al., 2012) (K Ursell et al., 2013). 

1.2.1 The Human Microbiome Project (HMP) 

In order to improve the knowledge about the human microbiome, The Human Microbiome 

Project (HMP), was designed with the main purpose of understanding the composition of the normal 

microbiome of healthy individuals (Cho & Blaser, 2012).  Understanding the normal skin bacterial 

variations such as intrapersonal, interpersonal, temporal and topographical can be used to calculate 

the statistical power to execute disease-related studies (Grice et al., 2009). 

HMP has also examined the largest cohort and set of distinct body habitats, microbial 

communities and their connections with their human hosts. Therefore it tries to focus on reference 

genomes that will provide frameworks to metagenomic annotation and analysis, but it also creates a 

criterion of the microbial community and function from a person, which will set criteria for what we call 

healthy (Consortium, 2013) (Methé et al., 2012). 

 This project includes 16S rRNA gene sequence data, and also whole-genome shotgun 

metagenomic data of human individuals. This will allow the understanding of patterns in the microbial 

diversity across not only the human body but also in between individuals. The data collected by the 
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project allows testing of the concept of enterotypes in the human microbiome (Koren et al., 2013). 

The 16S rRNA gene is common to bacteria and archaea but not to eukaryotes which possess 

an 18S subunit analogous to the prokaryotic 16S. The sequence analysis of this gene is an important 

part of understanding the characterization of bacterial diversity. It also has highly conserved regions 

that act as a molecular clock and a binding site for PCR primers (Grice & Segre, 2011). High-

throughput approaches to sequencing the 16S rRNA gene revealed a higher number of bacterial 

diversity on the skin than if it was used the culture-based method (Kong, 2012). Therefore, cultivation-

independent methods relying on the analysis of the skin microbial metagenome circumvent biases 

inherent to cultivation-dependent methods in the determination of microbial diversity.  

Metagenomic approaches are still not capable of differentiating 16S rRNA genes that come 

from living or dead organisms. Another obstacle is that favouritism exists in these methods when PCR 

is used prior to 16S rRNA gene sequencing. They also fail to provide information regarding the gene 

content of flexible, open pan-genomes or plasmids (Grice & Segre, 2011) although several current 

improvements are being made in this regard. Shotgun metagenomic sequencing facilitates a strain-

level examination of microbes within the microbial community, provided that enough phylogenetic 

resolution is obtained, which can only be possible when multiple genes are involved in the analysis. It 

helps to understand the various microbial community levels that go from kingdom to species and 

strain-level diversification (Byrd et al., 2017), besides providing information on the functional diversity 

of microbiomes. Some studies have shown that, for human skin samples, whole metagenome 

sequencing with tape-stripping is not only doable in clinical practices but at the same time it is 

minimally invasive and avoids the disruption of the skin surface with the use of a surgical blade (Chng 

et al., 2016). 

Previous studies on phylogenetic marker genes have focused on taxonomic characteristics of 

different skin areas and disease stages. Yet these have provided little information on the ecosystem’s 

functionality. On the other hand, metagenomic shotgun sequencing approaches the entire DNA in a 

sample, which allows characterizing not only the community’s functional capacity but also the 

genomes for which no targeted amplicon strategies exist (Kong & Segre, 2015). 

In the future, with the growth of genomic techniques, the investigation of microbial 

communities across all sorts of samples will become not only more feasible and non-invasive, which 

will help the monitoring of microbial communities in the human body and the health of vital organs 

such as the gut and the skin. Improvements in monitoring the microbial community will also lead to the 

discovery of novel therapies (Chng et al., 2016) (Cani, 2018). 

1.3 The Human Skin Microbiome  

The human skin is considered to be one of the largest organs in the human body and has 

three main layers: epidermis, dermis and hypodermis. It has many functions, such as: protection, heat 

regulation, control of evaporation, excretion and absorption. However, its main role is to serve as a 

physical barrier that protects our body from toxic substances and foreign organisms (Grice & Segre, 

2011). 
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The skin microbiome contains multiple microorganisms - a density up to 107 per cm2 with 

diverse communities of bacteria, fungi, mites and viruses (Cooper et al.,2015), where the majority are 

harmless or even beneficial to their host (Grice & Segre, 2011). 

The skin surface has a range of microenvironments with distinct features, like temperature, 

moisture, pH, sebum and topography. Other aspects that define different microenvironments are the 

density of hair follicles, glands, skin thickness and folds (Kong & Segre, 2015). Because of this 

heterogeneity across the human skin, a wide range of bacterial communities with different composition 

and diversity colonize the human body depending on the topography and physico-chemical 

characteristics of the skin (mostly associated with moist, dry and sebaceous microenvironments) as it 

can be seen in the Figure 1 (Grice, 2014). 

 

 

Figure 1 | Topographycal distribution of bacteria on skin, depending on the microenvironment (sebaceous, moist or 
dry area). The skin sites identified are preferred toward infections. For each site, there is a pie chart identifying the relative 

abundance of the principal microorganisms present. Respective phylum is described in bold (Grice & Segre, 2011). 

Nevertheless, since the skin is continuously exposed to the environment, it becomes a 

struggle to identify what species are transient or residents of the community (Grice & Segre, 2011). 

There are two main factors that can influence the variation in the skin microbiome: environment and 

host. Host factors are specific to each individual such as age, gender and skin location. Age is the 

factor that has the most impact on the microenvironment of the skin. For example, during puberty 

changes in sebum are very common. Gender differences, physiological and anatomical, such as 
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hormonal production, sebum and sweat are also thought to influence the composition of microbial 

communities inhabiting the human skin (Grice & Segre, 2011). Environmental factors, which can 

impact the colonization of skin by bacteria, are the clothing choice, cosmetics, soaps, hygiene 

products, moisturizers and antibiotic use. “These products may alter the conditions of the skin barrier 

however the effects on the skin microbiota remain unclear” (Grice & Segre, 2011). Therefore, it is 

challenging to define what constitutes a “healthy” bacterial community (Fierer et al., 2008). 

The perception that we have of the skin ecosystem is very important to understand the 

relationship between host and microorganisms. Perturbations disturbing the host-microorganism 

relationship can be endogenous or exogenous. Endogenous are perturbations that are related to, for 

example, genetic variations; on the other hand, exogenous perturbations are related to external 

factors such as hand washing (Figure 2)(Grice & Segre, 2011). 

 

Figure 2 | Principal exogenous and endogenous factors that contribute to variation of skin microbiome (Grice & Segre, 

2011). 

As mentioned above, it has been already acknowledged that there are different bacterial phyla 

on normal human skin. However, there are a few types that have larger quantities than others, such 

as: Actinobacteria, Proteobacteria, Bacteroidetes and Firmicutes (Thomas et al., 2017). Bacterial taxa 

frequently found on skin surfaces display an intra- and inter-individual variability: intra-individual 

variation in skin microbial communities is less pronounced than inter-individual variation (Grice & 

Segre, 2011). 

It is known that the primarily bacterial colonizers of the skin are Staphylococcus epidermidis 

and other coagulase-negative staphylococci, which are predominant in sebaceous areas. 

Corynebacteria is mostly found in moist sites, however, staphylococci sometimes can also be found in 

these sites. Furthermore, non-bacterial microorganisms like Malassezia spp. (fungal species) also 

prevail in sebaceous areas. Other non-bacterial species to be considered are the Demodex mites, 

which are microscopic arthropods that tend to feed on sebum and are commonly found during puberty 

as they prefer to colonize in sebaceous areas of the face, they may also feed on epithelial cells or 

other organisms that reside in the same space as the Demodex.  

A significant portion of the skin microbiome can infiltrate the subepidermal area and the 

deeper dermal stroma where they can cooperate with a variety of host cell types, thus, giving an 
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opportunity to control the behaviours of cells underneath the surface, some examples of this are: 

capacity of controlling the inflammation after injuries, increase the expression of host antimicrobial 

peptides and mature T cell responses (Figure 3)(Gallo, 2016). 

 

Figure 3 | Main layers of the skin viewed in cross-section with microorganisms. Different microorganisms (viruses, 

bacteria, and fungus) and mites habit not only the skin surface but also epidermis and dermis through hair follicules and glands 

(Grice & Segre, 2011). 

The adaptive immune responses can balance the skin microbiota but this microbiota can also 

work to educate the immune system. Another very important aspect in immune response is the 

relationship between the microorganisms. Several studies have demonstrated that many dynamic 

interactions can benefit the host. The interactions between bacteria and the host are favourable 

because bacteria can produce antimicrobial peptides (AMP), a defence mechanism, and other 

molecules that try to resist co-colonisation by pathogens (Kong & Segre, 2015).  

Host interactions can be sustained through sensing and signalling mechanisms, metabolic 

pathways or immunogenic features, which are likely to exhibit site-specificity (Kong & Segre, 2015). 

The dysregulation of the skin immune responses is common in many skin disorders but how 

this affects the microbiotia remains unclear, due to the little understanding of which organisms create 

a balance, how this relates to the genetic and environmental variation (Grice & Segre, 2011). Skin 

diseases are linked to many factors like stages of life, topographical location and specific 

microorganisms (Grice & Segre, 2011) (Kong & Segre, 2015). 

As different molecular methods had been developed in order to identify microorganisms, so 

has our understanding that the skin bacteria can be diverse and variable between human individuals. 

This understanding was also used to gain insight into the microbial involvement in human skin 

disorders and to discover antimicrobial and pro-microbial therapeutic approaches (Grice & Segre, 
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2011). In order to test the therapeutic potential of managing the microbiome in skin disorders, an 

elucidation of the baseline skin microbiome is needed (Grice et al., 2009). 

There are several common skin disorders that demand an underlying microbial contribution 

like intensifying disease severity or facilitating transitions from opportunistic to pathogenic, as a result 

of clinical improvement that has been proven to be correlated with antimicrobial treatments. There are 

many ways in which skin disorders have been associated with specific organisms: when a skin 

disorder has a correlation to the microbiota, when a skin disorder has an unidentified microbial 

component or when a skin commensal becomes invasive which origins infections. In recent years, 

scientists have realized that commensal microorganisms were not simple passengers notwithstanding 

they have an important role in our physiology including our immune responses and metabolism (Grice 

& Segre, 2011). 

1.4 Metagenomics: the Study of Metagenomes 

Handelsman and colleagues were the first to coin the term “metagenomics” (Handelsman et 

al.,1998), however in a DNA recombination (i.e. cloning) context, therefore as  “an approach where 

random fragments of environmental DNA are cloned into a suitable vector for maintenance in a 

surrogate host for functional screening, looking for gain of function in the surrogate host” (Marchesi & 

Ravel, 2015). Nowadays, the field of metagenomics has grown large and involves all sorts of 

cultivation-independent approaches and techniques used to analyse the collective pool of all 

genomes, the metagenome, in a given sample. Thus, the metagenome is the genetic material that 

represents the genomes of a microbial community and provides a view into the functional potential of 

the consortium. It has also become a powerful tool in microbiology research and further clinical 

applications.  

The Metagenomics approach has the ability to identify and characterize bacterial and viral 

pathogens. Some of its advantages consist in the ability to reduce costs and time, while it increases 

sensitivity to discover new pathogens that cannot be detected so easily by the culture-based methods. 

It is a promising approach for the microbial diagnostics field (Mulcahy-O’Grady & Workentine, 2016). 

The ability to study the composition and dynamics of the microbial communities has improved with the 

development of high-throughput sequencing technologies, bringing the capacity to generate 

metagenomics data enabling taxonomic and functional analysis (Waldor et al., 2015). However, even 

with all the improvements, high-throughput DNA sequencing generates a high volume of sequencing 

data generated and so there are still some technical, analytical and computational challenges (Kong & 

Segre, 2015) (Mitchell et al., 2016). 

With passing years, knowledge about sequencing technologies has improved, increasing our 

capacity to identity and characterize microbial communities colonizing the skin and their mechanisms 

of interactions, including pathogenic and mutualistic ones (Figure 4). Furthermore, our knowledge of 

healthy skin microbiota and how it changed skin disorders is growing. In spite of the growth of our 

knowledge in sequencing technology and healthy cutaneous microbiota, further investigation is still 

needed to understand how this could help diagnostics, prognostics and therapeutics, as they are 

promising in order to manage and treat dermatological diseases (Grice, 2014). 
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Figure 4 | Human Microbiome and bioinformatics efforts. Bioinformatic tools have been helping the improvement of the 

study of the human microbiome as well as its microorganism-host and microbe-microbe relationships (Gevers et al., 2012). 

Culture-based methods rely on the cultivation and isolation of microorganisms, however, less 

than 10% are able to survive in standard laboratory conditions. They also exclude microbes that 

depend on microbe-microbe interactions or synthrophy to thrive. However, it is still a relevant method 

to provide insights on bacterial, fungal and viral populations on the skin (Grice, 2014), in spite of being 

in general time-consuming. 

With the use of DNA sequencing, the accuracy and the precision of characterization and 

analysis of microbiomes becomes less biased in comparison with culture-based approaches. Current 

technologies allow the sequencing of nucleotides at the gigabase scale, resulting in an overview of the 

structural and functional diversity of a microbial community. One of the major advantages of shotgun 

metagenomics is the non-targeted nature of the sequencing. Once all the DNA sequences are 

collected, this holds the potential to answer a series of questions such as the metabolic pathways, 

antimicrobial resistance genes, presence of pathogens and overall community composition (Mulcahy-

O’Grady & Workentine, 2016). 

As already mentioned above, a popular approach used to identify bacterial populations in a 

community is through sequencing the small 16S subunit of the ribosomal RNA gene, as it will allow the 

identification of the bacteria or archaea present in a sample. This method is also a molecular 

technique and the basis for current taxonomic classification of microbes based on molecular markers 

(Grice, 2014). Whereas a 16S rRNA gene-based approach will deliver information on the taxonomic 

composition of a given microbiome, untargeted metagenomics will explore the distribution and 

abundance of multiple genes in a given microsetting, providing relevant information on the functional 

and taxonomic attributes of a microbial community.  

1.4.1 Metagenomics for Diagnosis of Infectious Disease 

There are several benefits that can be obtained from metagenomics data sets in order to 

improve the clinical applications, for example, fast and easy identification of pathogens. Moreover, this 

method may be also beneficial to other applications, such as study of antibiotic-resistance genes, 
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diagnosis and many diseases associated with bacterial, viral and fungal microbiomes. Metagenomics 

also can support the study of more complex phenotypes that are correlated with disorders and 

disruptions of the skin microbiome. Even though some disorders do not correlate with single 

pathogens, they emerge from the relationships of the microbiota present in the samples (Mulcahy-

O’Grady & Workentine, 2016). 

1.5 Atopic Dermatitis 

Atopic Dermatitis (AD), also known as atopic eczema, is a chronic skin disorder that has many 

different causes such as skin barrier dysfunction, decreased immune responses and microbial skin 

colonization (Kim et al., 2017). It is a cyclical disease, with flare periods that induce cutaneous 

phenotypes and non-flare periods where the skin has no signs of infections (Figure 5)(Chng et al., 

2016). To measure AD severity, it is common to use the SCORing Atopic Dermatitis (SCORAD) index 

(Figure 5) (Kong, 2012). Some factors such as the environment and human genetics affect the way 

allergic diseases such as AD express themselves.  

Some studies suggest that AD is usually found in areas such as the antecubital and popliteal 

sites that have similar microorganisms, although different composition of microbial communities.  

 
Figure 5 | AD disease severity and SCORAD. Representative clinical images of the antecubital (AC, left) and popliteal 

creases in patients with overall disease severity scores (objective SCORAD) and SCORAD evaluation sheet (Kong, 2012). 

Scientists believe that the emergence of AD is linked to a balance of the microbial community. 

Therefore, a clear understanding of how AD may influence the microbiome and which microorganisms 

influence severity is needed, in order to decide which is the “best” treatment (Thomas et al., 2017). 

Currently, there is no established “best” treatment to AD, although studies of the skin microbiome may 

help in the pursuit of alternative therapies (Grice, 2014). 

AD patients have a typical skin microbiome. It has been proven that this microbiota impacts 

the skin microenvironment allowing pathogenic microbial colonization and stimulating a pro-

inflammatory skin phenotype. Bacteria linked with AD have different roles. Therefore, being able to 

understand those roles and their contribution to disease emergence may be useful in future 

development of interventions to restore the microbial balance, but also to improve the general health 

of the skin while avoiding AD flares (Kong et al., 2017). 
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1.5.1 Characteristics of Bacterial Communities Associated with Atopic Dermatitis 

To better understand characteristics of microbial communities associated with AD, several 

scientists measured their diversity using for instance the Shannon diversity index, a measure tool that 

considers not only the richness (i.e., the total number of bacterial types), but also its evenness, the 

relative proportion of these bacterial types. It was concluded that there is a strong association between 

an increase in severity of AD and a lower diversity of the microbial community (Kong, 2012). 

In several studies, Staphylococcus aureus has been revealed to be associated with AD, 

because it is usually found in lesional and nonlesional AD skin. The S. aureus bacterium is especially 

abundant during AD flares. However its colonization of the host skin has not been yet clarified as 

being a cause or effect (Grice, 2014). Neverthless, it is known that there is a correlation between an 

increase of S. aureus, the emergence of AD and a decrease in microbial diversity (Kong, 2012). A 

decrease in S. aureus is, usually, followed by an increase in Propionibacterium, Streptococcus and 

Corynebacterium, which can be used as an indicator of the recovery from deterioration of AD (Kim et 

al., 2017). More severe cases of AD flares showed a higher presence of Staphylococcus aureus 

where less severe cases had a Staphylococcus epidermidis presence. S.epidermidis has been 

associated to infections due to the fact that it is permanent omnipresent colonizer of the skin (Otto, 

2009). It has also been proven that patients with more severe cases have a higher percentage of S. 

aureus strains whereas less severe cases display a more heterogeneous S. epidermidis strain 

community (Gallo, 2016). 

S. epidermidis engages not only directly but also indirectly with the innate and adaptive 

immune barrier to pathogens (Gallo, 2016). Researchers have favoured the hypothesis that S. 

epidermidis is not causing the disease but rather keeping a relationship with the host. It is also 

believed that these bacteria may be beneficial during infection. Some ideas reference the fact that 

S.epidermidis might function as a probiotic that can prevent colonization of bacteria such as S. aureus; 

however, there is still no clear evidence of these ideas (Otto, 2009). Questions still remain on why it is 

advantageous to S.epidermidis not to cause severe infections by maintaining a low level of virulence 

as it opposes to its “cousin” S.aureus. Even though some studies have tried to prove the fact that S. 

epidermidis may out-compete S. aureus, there is still no evidence in vivo (Otto, 2009). 

Another interesting fact is that AD-associated skin microbiome generates excessive ammonia, 

which explains a high skin pH, which may favour the prevalence of pathogenic bacteria. Some studies 

suggest that a reduction of ammonia-oxidizing bacteria may increase the risks of AD (Kong et al., 

2017). It also has been proven in previous studies that children with a lower diversity in the gut 

microbiota may develop atopic eczema in later years, suggesting a connection between gut microbiota 

and the skin (Grice, 2014). 

1.5.2 Immunne Responses in Atopic Dermatitis  

Bacteria, present in human skin, interact with cells below the surface, inducing cells behavior 

in controlling the immune responses (Gallo, 2016).  
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Antimicrobial peptides (AMPs) are oligopeptides with a varying number of amino acids, (Bahar 

& Ren, 2013) also known as immune defense molecules, that come from the production of mast, 

paneth, epithelials cells, neutrophils and adipocytes. They try to control the growth of microorganisms 

that make up the skin microbiome. When the balance of the microbiota is altered it can lead to 

dybiosis, which can consequently lead to a disruption of the immune homeostasis and the increase of 

disease symptoms. Even though there is some uncertainty of this occurrence, some patients with AD 

have decreased capacity to produce some AMPs like β-defensis and cathelicidins even in the 

presence of an inflammation. This deficiency could be related to a resistance in the growth of 

pathogens. Having high numbers of S. aureus in AD could lead to pathophysiology of AD which is 

related to immune dysfunction, decrease of AMPs, disruption of the skin barrier and an aggravation of 

allergic reactions (Nakatsuji et al., 2017). S. epidermidis can reduce the inflammation after injuries, 

promoting the expression of AMPs and increasing the development of cutaneous T cells (Nakatsuji et 

al., 2017). Exotoxins produced by S.aureus usually have super antigenic properties that can stimulate 

T-cells directly (Thomas et al., 2017). 

1.5.3 Mutations Impact in Atopic Dermatitis 

There are several risk factors of AD such as the loss of function derived from a mutation in the 

the gene encoding filaggrin (FLG), which is an important factor of terminal differentiation and skin 

barrier function since it regulates pH and hydration of the epidermis (Chng et al., 2016). This type of 

mutation is associated with the increase of AD severity and S. aureus colonization (Gonzalez et al., 

2016). 

1.5.4 Treatments Impacts in the Microbial Community  

Nowadays, Atopic Dermatitis can be treated with systematic antibiotics, combination of topical 

corticosteroids and diluted bleach bath (Kong, 2012). 

Some studies claim that using a combination of topical steroids and antibiotic treatments can 

eliminate S. aureus from some patients with AD. Other studies say that with the use of oral antibiotics 

it is possible to reduce bacterial colonization and improve AD severity. However, it is only temporary 

as the benefits did no last longer than three months (Baranska-Rybak et al., 2011). The application of 

antimicrobial coagulase-negative staphylococci (CoNS) to patients with AD can reduce the 

colonization of S. aureus. This shows that commensal skin bacteria can protect against pathogens but 

also how dybiosis in the skin microbiome can progress to a disease (Nakatsuji et al., 2017). 

1.5.5 Objectives and Research Questions 

The main goal of this study was to address the relationship between Staphylococcus aureus 

abundance and shifts in the structure of the human skin microbiome, with implications to our 

understanding of Atopic Dermatitis (AD), using a metagenomic approach. In order to have an accurate 

answer to the main question, several other questions had to be made. 
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It is already known that a high abundance of S. aureus in human skin is very common in AD 

patients. However, is there any relationship between S. aureus and the microbial community? In order 

to answer this question the response of phylum taxonomic abundances in the regions susceptible to 

AD: Antecubital Creases (Ac), Popliteal Creases (Pc) and Volar Forearm (Vf) samples was analysed, 

with charts created with the relative frequency data - percentage of the reads per phylum and per 

sample per site 

If there is any relationship between S. aureus and the human skin microbiome, “which are the 

main taxonomic and functional components of the skin microbiome that respond most to high 

abundance of S. aureus?”, “Are the effects equal for all sites?”, “ Does the bacterial community vary 

between sites and according to the abundance of S. aureus?”. Through multivariate statistics using 

Principal Coordinates Analysis (PCoA), the formation of skin sample clusters along with the 

percentage of S. aureus in the samples was examined. Since the ordination diagrams obtained from 

the PCoAs did not allow for a clear visual distinction between sample groups, One-way PERMANOVA 

tests were necessary to precisely test for significant differences in skin microbiome structure among 

the studied groups. For functional analysis at the IPR level, the same multivariate analysis and tests 

mentioned above were performed.  

To identify the bacterial taxa that contribute to the major dissimilarities between the microbiomes 

according to site of origin or different abundances of S. aureus, SIMPER tests were performed at the 

OTU (Operational Taxonomic Unit) level. For Functional analysis at the IPR level, the same SIMPER 

tests mentioned above were performed.	
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2. Materials and Methods 

2.1 Collection and treatment of taxonomic and functional data 

2.1.1 Collection of the data set from EBI-Metagenomics (MGnify) 

The dataset analysed in this thesis was collected from EBI-Metagenomics (MGnify) and can 

be accessed through the following code: MGYS00000604. This dataset was found through the study 

of Kong et. al., 2012. It can be also accessed through GenBank (http://www.ncbi.nlm.nih.gov/genbank) 

as BioProject ID 46333.  

When acessing the reference code at EBI-Metagenomics, there are different matrix files 

summarizing the study. Each downloadable file contains an aggregation of the analysis results from 

the individual study's runs. To get further information about the analysis and individual runs it is 

necessary to access the webpage. 

For this study the following matrix files were downloaded: phylum level taxonomies, taxonomic 

assignments at the Operational Taxonomic Unit (OTU, defined at 97% similarity of 16S rRNA genes) 

leveal and InterPro (IPR) matches for functional analysis using the InterPro protein sequence 

database. The file names are respectively SRP002480_phylumtaxonomy_abundances_v2.0; 

SRP002480_taxonomy_abundances_v2.0 and SRP002480_IPR_abundances_v2.0, and can be 

downloaded from the MGnify platform using the abovementioned accession code. 

 The downloaded files were very complex and had a lot of information that was not necessary 

for the aim of this study. All of the files are built upon the same samples using only 16S RNA gene 

sequencing for taxonomic assignments at phylum (phylum taxonomies table) and Operational 

Taxonomic Units (OTUs, a proxy for bacterial species determined at 97% 16S rRNA gene similarity) 

levels, plus a functional table derived from untargeted shotgun sequencing containing InterPro IPR 

entries functional assignments.  

2.1.1.1 EBI-Metagenomics (MGnify) 

As it was mentioned in the introduction, the study of metagenomes and its relevance have 

been increasing. As a result of this, an in order to improve the quality of future studies, the European 

Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI) created the EBI 

Metagenomics platform (Hunter et al., 2014), which has been recently updated and renamed as 

“MGnify”. 

EBI-Metagenomics / MGnify is a free website tool and database of metagenomics projects, 

one of the biggest platforms of analysis and record metagenomic and meta-transcriptomic data. This 

website tool has the capacity of delivering structural and functional diversity data from all sorts of 

microbiomes, integrating environmental data (so-called “metadata”), and thus allowing researchers to 

obtain insights into the roles played by physical-chemical conditions in shaping natural microbial 

communities, how microbial species may interact with one another within microbiomes and how they 

interact with their hosts. Scientists can submit different types of data, like 16S rRNA amplicon data, 
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WGS sequenced metagenomic and meta-transcriptomic reads, and user-submitted sequence 

assemblies. Disregarding the data source, the platform can standardize the analysis workflow and has 

the ability to produce taxonomic and functional diversity tables for further studies (Mitchell et al., 

2016). 

The scheme below introduces the analysis pipeline (v2.0) released in March 2015 (Mitchell et 

al., 2016). 

 

 

Figure 6 | Schematic of the EBI Metagenomics analysis pipeline. Processes/components are indicated as circles and 

inputs/outputs are represented by rectangles. The pipeline is divided into two parts: one performing taxonomic classification 

(based on 16S rRNA) and the other providing functional annotation (based on InterPro databases). A full description of the 

steps and tools are provided on the EMG. (Mitchell et al., 2016) 
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2.1.2 Treatment of the dataset 

To obtain a proper dataset for this study, the sites selected corresponded to the Antecubital 

(Ac) and Popliteal Creases (Pc), plus the Volar forearm (Vf) and the Nares. The selection of these 

sites was driven by the fact that Ac and Pc are the areas that are more usual to have AD crises, Vf is 

important in order to understand if the microbiome proliferates from Ac and the Nares used as a 

control (Kong, 2012). In spite of being a reference, there was no significant data about the nares to 

support robust comparisons and conclusions so this area had to be discarded.  

 Form a statistical point of view, an elimination was made of all the samples where the sum of 

16S rRNA gene reads was less than 1000, to eliminate the possibility to include poorly characterized 

samples in the analysis. This criterion eliminated all the Nare samples present in the raw datasets 

available at MGNify, and therefore this study contemplates only the Ac, Pc and Vf microbiomes 

containing different levels of S. aureus abundances (see below). Therefore, it was necessary to 

standardize all the three data sheets containing taxonomic (phylum and OTU levels) and functional 

(IPR entries) information.  

In spite of having information from where the samples were taken, the right and left 

antecubital area, for example, it was assumed as it being “just the antecubital area”. As they are 

considered to be the same area, they are expected to have the same environment, therefore, the 

same microbiome.  

In the beginning of this study, the excel sheets had 4384 samples characterized either by 16S 

rRNA gene sequencing procedures or by total metagenome shotgun sequencing. As a consequence 

of the selection of only those samples characterized by total metagenome sequencing and of the 

filtering employed to discard samples with less than 1,000 rRNA gene reads from these samples, a 

total of 183 skin microbiome samples were left, which 60 samples were from Antecubital Creases, 76 

from Popliteal Creases and 47 from Volar Forearm. The resulting contingency tables (phylum- and 

OTU-level taxonomies and IPR assignments) were prepared for downstream statistical analyses as 

explained below. 

2.1.2.1 Relative Frequency and Hellinger transformation 

2.1.2.1.1 Relative Frequency 

In order to normalize the data, it was necessary to tranform it in percentages. Therefore, as 

Kenney wrote “If an event occurred r times on the way described as “success”, in a series of n 

independent random trials, all made under the same essential conditions, the ratio r/n is called the 

relative frequency of success” (Kenney, 1963). 

Since the conditions for this study are similar as Kenny described, I starded to pull out all of 

my data in relative frequency, since my reads were in absolute frequency.  

  The relative frequency is defined as the ratio between the absolute frequency and the total 

number of observations. 

Relative Frequency = !"#$%& !" !"#$% !"# !"#$%∗ 
!"# !" !"" !"#$% !"# !"#$%&

 (Equation 1) 
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*at Phylum, OTU and IPR level per sample. 

2.1.2.1.2 Hellinger Tranformation  

One of the aims of this research was to find a relationship between the microbiome and since 

there is a large number of Phylum/OTU/IPR, it was important to have my data normalized using the 

Hellinger Transformation in order to have an improvement of the proportional abundance data, thus 

correcting for a possible overweight of highly abundant IPR entries, OTUs or phyla when determining 

the most differentiating taxonomic groups and functions across skin samples with different 

abundances of S. aureus.  

The Hellinger transformation is defined as 

y′!" =
!!"
!".

 (Equation 2) 

“Where j indexes the species, ij the site/sample, and i is the row sum for the ith sample” 

(Legendre & Legendre, 2012). 

The data, in this stage was already in the form yij/yi, so it was only necessary to do a square 

root transformation to the data. 

2.2 Analysis of Phylum Taxonomic Abundance  

 The analysis of the taxonomic abundance at the phylum level was necessary since it was 

important to have an overview of the microbiome present in the skin surface, and especially in the 

critical areas (Ac and Pc) usually affected by Atopic Dermatitis.  

Five bar charts were created with the relative frequency data - percentage of the reads per 

phylum and per sample per site: Ac, Pc and Vf - to have an overview of the main phyla present in the 

skin microbiome: Actinobacteria, Firmicutes, Proteobacteria, Bacteriodetes, Others and Unassigned 

(the one’s that don’t have any type of classification). 

2.3 Taxonomic and Functional Analysis 

For multivariate analysis of taxonomic and functional profiles, the PAST software (v3) was 

used. 

2.3.1 PAST 

Past (PAleontological STatistics) is a free software available for scientific data analysis, that 

integrates spread-sheed-type data with functions for data manipulation, plotting, univariate and 

multivariate statistics, ecological analysis, time series and spatial analysis, morphometrics and 

stratigraphy (Hammer et al., 2001). 

In order to improve possible outcomes, the following resources within PAST were used: PCoA 

with the Bray-Curtis Dissimilarity index, PERMANOVA with Bonferroni corrections to test the validity of 

clusters formed using PCoA and SIMPER (similarity percentage) analysis to determine which phylum / 
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OTU / IPR displayed the largest shifts in abundance according to increasing levels of S. aureus 

abundance in the skin.   

2.3.1.1 PCoA –Principal Coordinates analysis  

Principal Coordinates Analysis (PCoA) is a multivariate statistic, an ordination method used to 

explore and to visualize similarities or dissimilarities of data; to visualize individual and/or group 

differences (Hammer et al., 2001)(Gail et al., 2007). 

PCoA is typically applied when a reduction and interpretation of large multivariate data sets, 

with some underlying linear structure, is needed. The aim of PCoA is to calculate a distance matrix 

and produce a graphical configuration in a low dimensional space (typically two or three dimensions), 

such that the distances between the points in the configuration reflect the original distances as 

accurate as possible. The PCoA can be applied either on the variables or on the observations (Gail et 

al., 2007). The PCoA routine finds the eigenvalues and eigenvectors of a matrix containing the 

distances between all data points. The eigenvalues, giving a measure of the variance accounted for by 

the corresponding eigenvectors (coordinates) are given for the first four most important coordinates. 

The percentages of variance accounted for by these components are also given (Hammer et al., 

2001). 

2.3.1.1.1 Bray-Curtis Dissimilarity 

Bray-Curtis measure for abundance data was used to measure the comparisons between 

samples in analyses of multivariate data (Somerfield, 2008). 

The Bray-Curtis dissimilarity expression is: 

𝑑!" =
|!!"!!!"|

!
!!!

(!
!!! !!"!!!")

 (Equation 3) 

“For the following, let Y = (yik ) be the (N × p) matrix of i = 1, ..., N observation units (rows) by 

k = 1, ..., p variables (columns). Each dissimilarity or distance measure will be given as a value dij 

between observation units i and j, where j (like i) goes from 1 up to N” (Anderson, 2005). 

“The dissimilarity between samples is the sum (over species) of the modulus of the difference 

between counts and them divided by the sum of the counts in the samples being compared” 

(Somerfield, 2008). 

This is a suitable measure for biological data, which combines the structural information on 

presence or absence with quantitative counts of the species that are present (Somerfield, 2008). 

2.3.1.2 Permanova 

Permutational multivariate analysis of variance (PERMANOVA) is a geometric partitioning of 

variation across multivariate data, defined explicitly in the space of a chosen dissimilarity measure, in 

response to one or more factors in an analysis of variance design. Statistical inferences are made in a 

distribution-free setting using permutational algorithms.  
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 “In the simplest situation of a one-way test (i.e. the test of a single factor), with a group and N 

observation units (replicates) per group, let N be the total number of observation units and let dij be 

the distance between observation i and observation j” (Anderson, 2005). Then, the total sum of 

squares is:  

𝑆𝑆! =
!
!

𝑑!"!!
!!!!!

!!!
!!!   (Equation 4) 

To calculate SST it is only necessary to add up the squares of all of the distances in the sub-

diagonal half of the distance matrix and divide by the total number of observations (N), as illustrated 

below (Figure 7):  

   

Figure 7 | Schematic representation of the sum of the squared distances in the half-matrix, divided by the total numer 
of observations. (Anderson, 2005) 

Thus, schematically, for the case of two groups with equal sample sizes, this is (Figure 8):  

 

Figure 8 | Schematic representation of the sum of the squared distances in the half-matrix, divided by the total number 

of observations for the case of two groups with equal samples sizes. (Anderson, 2005) 
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Next, the within-group sum of squares is:  

𝑆𝑆! = !
!

𝑑!"!!
!!!!!

!!!
!!! 𝜀!" (Equation 5) 

Here the ε ij takes the value of 1 if observation i and observation j are in the same group, any 

other way it would take the value of zero (Anderson, 2005). 

The among-group sum of squares is the difference: SS A = SST − SSW . 

 A pseudo F-ratio associated with the test of this factor is:  

𝐹 = !!! (!!!)
!!! (!!!)

  (Equation 6) 

“Where (a −1) are the degrees of freedom associated with the factor and (N − a) are the 

residual degrees of freedom” (Anderson, 2005). 

When considering one-way analysis, the permutation procedure is used when the distribution 

of F is under a null hypothesis, which means that there is no effect of the factor. If the null hypothesis 

were true, then the F-statistic actually obtained with the real ordering of the data relative to the 

treatments will be similar to the values obtained under permutation. If, however, there is a significant 

effect of treatments, then the value of F obtained with the real ordering will appear large relative to the 

distribution of values obtained under permutation. In that case, the value of F for the data is unlikely to 

have been obtained if the null hypothesis were true (Anderson, 2005). 

The frequency distribution of the values of Fπ is discrete: which means that the number of 

ways that is possible for data to be re-ordered is finite. The probability associated with the test statistic 

under a true null hypothesis is calculated as the proportion of the Fπ values that are greater than or 

equal to the value of F observed for the real data. P-value can be calculated as: 

𝑃 = !.!" !!!! !!
!"#$% !".!"!! !! 

  (Equation 7) 

When trying to understand multivariate data it is important to know that the observations of the 

data matrix are randomly permuted. However, this does not mean these values are shuffled just 

anywhere.  

Concerning the one-way test, by enumerating all the possible permutations, we will have the 

correct P-value that is linked to the null hypothesis (Anderson, 2005). 

There are some assumptions to take into account, when discussing one-way analysis. 

PERMANOVA only assumes the observations units that are convertable under a true null hypothesis. 

It the observations tied in with each other then by randomly shuffling them will only destroy the 

inherent structure. Also, in the majority of cases there is the assumption that observation units are 

independent of each other. On the other hand, it is not expected that individual variables are 

independent of each other (Anderson, 2005). 

 

Bonferroni corrected p-values for Pairwise 

 

Bonferroni test is a method used to compare multiple tests used in statistical analysis, 

demonstrating where there is any statistical significance of the dependent variable or not. In this study 

it was used to count act the problem of multiple comparisons by correcting against type 1 error. 
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This test is based on the idea that if you test N dependent or independent hypotheses, one 

way of maintaining the error rate is to test each individual hypothesis at a statistical significance level 

that is deflated by a factor of  (1/n). Therefore, for a significance level for the whole family of tests of α, 

the Bonferroni correction would be to test each of the individual tests at a significance level of α/n 

(Simes, 1986). 

The Bonferroni inequality is usually used when doing several tests of significance to set an 

upper bound on the overall significance level 𝛼 (Simes, 1986). 

“If T1, . . ., Tn is a set of n statistics with corresponding p-values Pl, ... , Pn for testing 

hypotheses H1,…, Hn, the classical Bonferroni multiple test procedure is usually performed by rejecting 

Ho= (H1,…, Hn) if any p-value is less than 𝛼 / n. Furthermore, the specific hypothesis Hi  is rejected for 

each Pi ≤ 𝛼 / n (i = 1, .. ., n)” (Simes, 1986). 

The Bonferroni inequality,  

𝑝𝑟 (𝑃! ≤
!
!
)!

!!! ≤ 𝛼, (0 ≤ 𝛼 ≤ 1) (Equation 8) 

It ensures that, the probability of rejecting at least one hypothesis when all others are true, is 

no greater than 𝛼 (Simes, 1986). 

2.3.1.3 Simper – Similarity Percentage Analysis 

SIMilarity PERcentages decompose the similarities into the contributions from each species, 

mostly used as a post-hoc test in multivariate abundance. In other words, it finds the average 

contributions from each species to the calculated Bray-Curtis dissimilarities (in the case of this thesis) 

among sample groups. It is commonly used to answer the question ‘in which taxa is this difference 

most evident?’.  

The strength of between-group is the effect with variance; this means that the SIMPER 

algorithm will identify taxa with a strong between-group effect and with large within-group variance, 

regardless of the presence of a between-group effect (Warton et al., 2012). 

2.3.2 Linear regressions for the results of taxonomic analysis  

Following SIMPER analyses, there was an interest to determine the linear correlation between 

the relative abundances of each of the top ten SIMPER entries and those of Staphylococcus aureus. 

Therefore, several linear regressions were made to understand those relationships.   

Linear regression is an empirical model that is commonly used for predictive analysis. It is a 

very usefull tool to understand what is the relationship between a variable of interest and a set of 

related, predictor variables (Kenney, 1963). 

Furthermore it is very important to compreend the correlation coefficient, as it is what indicates 

whether the variables have any linear relationship or not.  
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2.4 Collection, analysis and comparison of S. succinus and S. aureus 
genomes. 

In this study, the RAST annotation pipeline was used to compare four S. succinus genomes 

with one genome representing a multi-resistant S. aureus strain and to compare the number of genes 

present in each subsystem. The strains used for the comparison were S. aureus USA300 and S. 

succinus SNUC1280, 14BME20, DSM15096 and DSM14617.  

2.4.1 RAST 

RAST, Rapid Annotations using Subsystems Technology, is an automatic annotation free 

server, built upon the framework provided by the SEED system (Figure 9) (Overbeek et al., 2014). It 

returns an analysis of the genes and subsystems of the genome in question, as supported by 

comparative and other forms of evidence (Glass & Meyer, 2011). 

Users can upload raw sequence data in FASTA format and they receive access to an 

annotated genome in an environment that supports comparison with an integration of hundreds of 

existing genomes; the sequences will be normalized and processed and summaries automatically 

generated. The server provides several methods to access the different data types, including 

phylogenetic and metabolic reconstructions, and the ability to compare the metabolism and 

annotations of one or more metagenomes and genomes. In addition, the server offers a 

comprehensive search capability (Aziz et al., 2008) (Glass & Meyer, 2011). 

 

Figure 9 | Overview of the workflow implemented in the metagenomics RAST pipeline. During the process three different 

steps are executed. A full description of the steps is provided on the following article. (Glass & Meyer, 2011) 
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Various tools have been built into the framework, allowing users to compare their data against 

other metagenomes or complete genomes taken from the SEED environment. The subsystems heat 

map and the taxonomic heat map provide comparative metagenomics summaries that cover the 

differences between samples (Glass & Meyer, 2011). 

The subsystem comparison tools identify the number of pegs in each metagenome that are 

connected to a subsystem via protein level similarity. Based on these connections, each subsystem 

present in a sample is scored by counting the number of sequences that are similar to a protein in 

each subsystem. This score is divided by the total number of sequences from the sample that are 

similar to any protein in a subsystem, to give a fraction of sequences present in each subsystem. This 

approach allows comparisons between samples that have different numbers of sequences. Since the 

fractions tend to be small (a few sequences hit each subsystem, but there are now over 600 

subsystems in the SEED), the scores can be factored for display purposes. Furthermore, a 

nonquantitative approach is provided to group the subsystem scores, emphasizing those subsystems 

that are most different between the samples. Moreover, the display can be limited to specific areas of 

metabolism, or other subsystem groups, as desired by the user (Glass & Meyer, 2011). 

The subsystem spreadsheet is populated with all genomes that have those functional roles 

and provides links to the relevant protein pages. The subsystem info tab provides an expert 

annotator’s notes on the creation of the subsystem. Although they are not comprehensive, the SEED 

subsystems are a particularly useful way to quickly determine the proteins that are involved in a 

related function and to determine known variations in functionality between organisms (Overbeek et 

al., 2014). 
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3. Results and Discussion 

3.1 Analysis of Phylum Taxonomic Abundance 

In order to confirm if the relative skin phylum taxonomic abundance with the literature was in 

concordance the data set, a bar chart representing the relative abundance of bacterial phyla across all 

the skin samples analysed was created. Figure 10 is therefore an overview of the relative abundance 

of the different phyla observed across all the 183 skin microbiome samples analysed, regardless of 

higher or lower incidence of Staphylococcus aureus in the samples.  

 

Figure 10 | Global Analysis of Taxonomic Abundance at the phylum level. Relative Frequency of the sum of the reads per 

Phylum in all skin microbiome samples analysed (N = 183). 

As it can be observed in Figure 10, the data set is in concordance with the literature, since the 

most frequent phyla across all skin samples are: Actinobacteria and Firmicutes, followed by 

Proteobacteria and Bacteroidetes (Thomas et al., 2017). As we can see, there are a lot of reads that 

were not classified - one of the big challenges of metagenomics approach. More investigation is 

needed in order to discover more bacteria.  

Bacterial taxa found on skin surfaces display intra-individual variability, so it is also important 

to know how the main six phyla are distributed in the samples (Grice & Segre, 2011). 

To have a better understanding of how the six groups highlighted in Figure 10 were distributed 

according with skin location, another bar chart was created with an overview of Phylum taxonomic 

abundances per Sample (Figure 11).  



25		

 

Figure 11 | Overview of Taxonomic Abundance at Phylum Level per Sample. Relative Frequency of the Abundance of 

Phylum per Sample. Ac- Antecubital Crease; Pc – Popliteal Crease, Vf – Volar Forearm. (R) . right side; (L), left side. Chart for 

all the 183 samples analysed in this study are shown. Sample lables for only about 1/3 of the total amount of samples are 

shown for the sake of simplicity.  

The samples in this dataset are not identified as if they were collected from patients with 

Atopic Dermatitis or from healthy patients. However, it is known that there are samples collected from 

patients with Atopic Dermatitis, and also in different disease stages, therefore it can be assumed that 

this between-group difference in abundance is because of that, because as it is said in the literature, 

when a patient has a flare, there is a substantial growth of Staphyococcus aureus, which belongs to 

the phylum Firmicutes, resulting in the decrease of other species, for example, from Actinobacteria, 

like Corynebacterium. And this is actually seen in Figure 11. When there is a higher relative frequency 

of Firmicutes, the relative frequency of Actinobacteria decreases (Kong, 2012). 

Neverthless, it is known that there is a correlation between a decrease of S. aureus and an 

increase in Propionibacterium, Streptococcus and Corynebacterium, which can be used as an 

indicator of the recovery from deterioration of AD (Kim et al., 2017). 

To better understand/discover more about the relative phylum abundance between the groups 

(Ac, Pc and Vf) and if there was any impact of the relative frequency of S. aureus present on phylum 

distributions (and later, on OTU and IPR distributions, see below), the samples were divided into five 

groups according to the percentage of incidence of S. aureus (Table 1). 

Table 1| Division of the samples per relative frequency of S. aureus.  

Groups 
(% S. aureus) 

No. Samples Percentage(%) 

0-1% 50 27,32 

1-2% 43 23,50 

2-5% 52 28,42 

>5-10% 29 15,85 

>10% 9 4,92 

Total 183 100 % 



26		

 

As it can be observed from Table 1, there are more samples with one to five percent of S. 

aureus and there are only 9 samples (from 183) with a relative frequency of S. aureus higher than 

10%. Although there is no information in the matrix files, these latter samples are probably from 

people with flare. 

 

Figure 12 | Relative Phylum Taxonomic Abundances versus Percentage of S. aureus in Antecubital Creases Samples. 
Chart for all Antecubital Creases samples analysed in this study are shown (N=60).  

 

Figure 13 | Relative Phylum Taxonomic Abundances versus Percentage of S. aureus in Popliteal Creases Samples. 
Chart for all Popliteal Creases samples analysed in this study are show (N=76). 
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Figure 14 | Relative Phylum Taxonomic Abundances versus Percentage of S.aureus in Volar Forearm Samples. Chart 

for all Volar Forearm samples analysed in this study are show (N=47). 

Observing the Figures 12, 13 and 14, it can be concluded that when there are more than ten 

percent of S. aureus, there is a decrese in Actinobacteria. Higher frequencies of S. aureus may 

promote higher incidence of other Firmicutes bacteria given the very high proportions of this phylum 

when S. aureus is present in abundances higher than 10%. To determine whether this is true and to 

infer which bacterial species in the complex skin microbiome may respond positively or negatively to 

higher S. aureus abundances, a more refined analysis of OTU abundances and distributions across 

the data was performed. 

3.2 Taxonomic Analysis at the OTU level 

3.2.1 Taxonomic Analysis at the OTU level of All the Samples 

One of the big challenges in the study of microbial communities in Atopic Dermatitis is to 

define and characterize what are the relevant features of the microbiome. In this study, the focus is on 

the microbial community changes between the “favourite” areas of AD and to know if S. aureus 

influences the community. 

In order to understand the similarities or dissimilarities of the data, Principal Coordinates 

Analysis (PCoA) on Bray-Curtis dissimilarity matrices were performed. 
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a)          b) 

 

 
c)           d) 

 

 

Figure 15 | Principal Coordinates Analysis (PCoA) of OTU profiles retrieved for All Samples (N = 183). PCoA performed 

on Bray-Curtis dissimilarity index calculated from Hellinger transformed data. (a) PCoA of taxonomic profiles of microbial 

communities between the three areas: Antecubial Creases (Ac), Popliteal Creases (Pc) and Volar Forearm (Vf); Coordinate 1 

versus Coordinate 2. (b) PCoA of taxonomic profiles of microbial communities between the three areas: Antecubial Creases 

(Ac), Popliteal Creases (Pc) and volar forearm (Vf); Coordinate 1 versus Coordinate 3. (c) PCoA of taxonomic profiles of 

microbial communities according to the relative percentage of S. aureus in the samples: A (0-1%), B (1-2%), C (2-5%), D (5-

10%) and E (More than 10%), Coordinate 1 versus Coordinate 2. (d) PCoA of taxonomic profiles of microbial communities 

according to the relative percentage of S. aureus in the samples; Coordinate 1 versus Coordinate 3.  

By comparing PCoA results from Figures 15 a) and b), we can see that there are a large 

overlap of samples from different areas, suggesting that, overall, there is no clear partition of 

microbiome structure across different skin locations and, therefore, simple exploration of the PCoA 

graphs were inconclusive in this regard. Although, complementing these results with those in Figure 

15 c) and d) we can observe that, the emergence of clusters representing samples with similar 

proportions of Staphylococcus aureus in somewhat clearer, although some overlap of samples 

displaying different S. aureus percentages in the ordination diagram still persisted. Althouhg this result 
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suggests that the microbiota is more similar when samples from the same site share the same 

average of percentage of S.aureus, simple exploration of the ordination diagram was not helpful in 

allowing for clear conclusions in this regard perhaps because of the low percent of data variation 

explained by the coordinates 1 to 3 used to built the diagrams.    

To determine whether the structure of the skin bacterial communities changed according to 

their site of origin and the frequency of S. aureus, PERMANOVA tests were carried out. Results in 

Tables 2 and 3 pertain to tests for differences according to sample origin (Ac, Pc and Vf). 

Table 2 | Summary of One-Way PERMANOVA carried out for the whole dataset (N=183). Results of the Permutation test. 

Permutation N: 9999 

Total sum of squares: 28.33 

Within-group sum of squares: 26.2 

F: 7.329 

p (same): 0.0001 

Results of the permutational Analysis of Variance for the distance matrix with 9999 permutations, supporting statistical differences between the 

three sites (Ac, Pc and Vf), disregarding differences in S. aureus abundances, with a p-value of 0.0001.  

Table 3 | Pairwise of One-Way PERMANOVA carried out for the whole dataset. Significant values are in bold. 

 Ac Pc Vf 

Ac  0.0003 0.0378 

Pc 0.0003  0.0003 

Vf 0.0378 0.0003  

Results of the permutational Analysis of Variance for the distance matrix with 9999 permutations, supporting statistical differences between the 

three sites (Ac, Pc and Vf), disregarding differences in S. aureus abundances, with a p-value of 0.0001.  

From the summary (Table 2) it can be concluded that the results of the test are relevant since 

the p-value is 0.0001.  

In Table 3, all of the values are in bold, since all the values are statistically relevant. In other 

words, there are significant dissimilarities between all the areas: Ac, Pc and Vf, in spite of the overlap 

between sample groups observed in Figures 15a and b. 

In order to identify bacterial taxa that contribute to the difference between preferred sites of 

disease manifestation, SIMPER analysis at the OTU level was performed. Mean change in abundance 

with areas and percentage contribution to differences in the Bray-Curtis dissimilarity metric were 

tabulated below (Table 4). 
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Table 4 | Results from SIMPER analysis of all samples. SIMPER analysis identifying the percentage contribution of each 

OTU according to the Bray Curtis dissimilarity metric between Ac, Pc and Vf.  

Taxon Av. dissim Contrib. % Cumulative % Mean Ac Mean Pc Mean Vf 

Root;k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomyce

tales;f__Propionibacteriaceae;g__Propionibacterium;s__acnes 

1.459 2.606 2.606 0.486 0.241 0.508 

Root;k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomyce

tales;f__Corynebacteriaceae;g__Corynebacterium;s__ 

1.077 1.923 4.53 0.347 0.486 0.394 

Root;k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Ps

eudomonadales;f__Pseudomonadaceae;g__Pseudomonas;s__ 

0.601 1.074 5.603 0.0992 0.0705 0.119 

Root;k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphyloco

ccaceae;g__Staphylococcus;s__aureus 

0.5512 0.9848 6.588 0.18 0.149 0.148 

Root;k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Strept

ococcaceae;g__Streptococcus;s__ 

0.5197 0.9284 7.517 0.194 0.125 0.187 

Root;k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphyloco

ccaceae;g__Staphylococcus;s__ 

0.4258 0.7608 8.277 0.175 0.166 0.151 

Root;k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphyloco

ccaceae;g__Staphylococcus;s__succinus 

0.3794 0.6778 8.955 0.136 0.119 0.115 

Root;k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__[Tiss

ierellaceae];g__Anaerococcus;s__ 

0.3438 0.6142 9.569 0.068 0.125 0.0843 

Root;k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomyce

tales;f__Propionibacteriaceae;g__Propionibacterium;s__granulosum 

0.3357 0.5998 10.17 0.107 0.052 0.117 

Root;k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__[Tiss

ierellaceae];g__Peptoniphilus;s__ 

0.3316 0.5925 10.76 0.0414 0.0961 0.0468 

(...) 	      

Root;k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphyloco

ccaceae;g__Staphylococcus;s__epidermidis 

0.2486	 0.4442 15.67 0.0897 0.0692 0.0747 

Similarity percentage analysis of the OTU diferences between the different sites Ac, Pc and Vf. The first collumn identifies the OTU explained by 

that row, the second collumn represents the average of dissimilarity, the third collumn shows the % dissimilarity explained by that OTU, the fourth 

column is related to the cumulative Bray-Curtis dissimilarity metric for the OTU thus far represented in the table and the last three show mean 

abundance at ste Ac, mean abundance at site Pc and mean abundance at site Vf. 

Table 4 shows the ten most site-differentiating OTUs revealed by SIMPER analysis, along 

with a row for Staphylococcus epidermidis, since it is a species believed to have a relationship with S. 

aureus in the process of skin colonization, althought the precise type of this relationship is currently 

unknown.  

After analysing Table 4 to better understand the relationship between the OTUs and their 

sites, interesting results were found about the main species possessing diferent abundance in the 

three different areas. For instance, P. acnes has a low mean abundance in Pc and Pseudomonas sp. 

has a higher mean abundance in Vf comparing to the other sites.  

Since it is already known that S. aureus is related to AD and its abundance differs between 

skin sites, it is even more interesting to know how S. aureus and the other 10 species from SIMPER 

results correlate.  
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Figure 16| Linear Regression between the abundance of the ten most site-differentiating OTUs revealed by SIMPER 
analysis and S. aureus. The data used for this linear regressions were Hellinger transformed.  
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As it can be observed from all the linear regressions, there are three obvious positive linear 

correlations between S. aureus and Staphylocuccus sp., S. succinus and S. epidermidis. 

In concordance with the literature, it is known that S. aureus interacts with members of the 

same genus and that when we have a high abundance of S. aureus in a sample, S. epidermidis reacts 

but the answer to why it is until now unknown (Kong, 2012) (Nair et al., 2014). 

According to the literature, S. epidermidis inhibits the growth of S. aureus (Nair et al., 2014). 

So, maybe the growth of abundance of S. epidermidis keeps up with the abundance of S. aureus as a 

possible immune response.  

The correlation between S. aureus and S. succinus was not metioned before in the literature 

and it is very interesting because it is the best linear correlation according to the regression coefficient 

(r2=0,909).  

The relationship between S. aureus and Propionibacterium acnes is intriguing, because P. 

acnes is usually related to skin disorders and as we can observe, when there is a high percentage of 

S. aureus, the amount of P. acnes is null or its relative abundance is low. In fact, it has already been 

reported that there is a co-existence of S. aureus with other microbes like P. acnes in acne lesions. In 

acne lesions, S. aureus invades the human skin as a pathogen provocating tissue damage. Levy et al. 

showed that the prevalence and resistance patterns of S. aureus in individuals with acne are higher 

compared with those without acne, which indicates that both bacteria are associated with acne but the 

exact mechanism is still not explicit (Kumar et al., 2016) (Levy et al., 2003). 

However, there are still other relationships (e.g. competition) or factors that affect the 

abundance of P. acnes. As we can identify in the graphic related to this relationship, when we are 

towards low relative abundance of S. aureus there is a wide range of abundance of P. acnes. So this 

can indicate that there are other factors affecting the abundance of P. acnes. Moreover, our data 

suggest strongly that P. acnes and S. aureus possess a negative abundance correlation in skin 

samples not affected by acne lesions which is highly contrating with the relationship between both 

species in the presence of acne lesions. The observations made above for P. acnes do also hold true 

for Propionibacterium granulosum. 

Although Corynebacterium spp. is more sensitive to the changes of the microenvironment 

(Kwaszewska et al., 2014), its abundance decreases only when S. aureus abundances are very high, 

probably due to being less sensitive to microenvironmental changes that take place in the skin as a 

consequence of AD. The relashionship between Corynebacterium and S. aureus has been studied, 

and consensus exists on the competitive nature of this interaction. For instance, a study found that S. 

aureus responds to commensal Corynebacterium with a shift to commensalism. This opens up the 

possibility that commensal Corynebacterium spp. are an unexplored source for new antivirulence 

therapies that limit activation of S. aureus infection (Ramsey et al., 2016). 

The majority of the interactions between S. aureus and other bacterial species, especially non 

Staphylococcus species, are competitive in nature, however this does not mean that these organisms 

completely inhibit the colonization of S. aureus; rather, S. aureus employs numerous defense 

strategies for its survival, counterattacking the competing bacteria and surviving in the same 

ecological niche (Nair et al., 2014). 
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From all the other species which have been selected after SIMPER analysis, the correlation 

between their abundances and that of S. aureus was not as pronounced as the ones mentioned above 

for Staphylococcus species or P. acnes. This is because either they show high abundances (in some 

samples only) when S. aureus abundance is very low (like Pseudomonas or Peptoniphilus, for 

instance, but usually they have low abundance anyway) or they show low abundance only when S. 

aureus is very high (like Corynebacterium). Our first SIMPER analysis aimed at detecting OTUs that 

oscillate considerably between skin sites, but across all the data several of the OTUs fetched this way 

do not show a clear positive or negative regression with S. aureus.  

3.2.1.1 Taxonomic analysis at the OTU level of All the Samples without S. aureus 

a)      b) 

 

c)      d) 

 

 

Figure 17  | Principal Coordinates Analysis (PCoA) at OTU profiles retrived for All Samples without S. aureus (N=183) 
PCoA performed on Bray-Curtis dissimilarity index calculated from Hellinger transformed data. (a) PCoA of taxonomic profiles of 

microbial communities without the OTU relatively to S. aureus between the three areas: Antecubial Creases (Ac), Popliteal 

Creases (Pc) and Volar Forearm (Vf); Coordinate 1 versus Coordinate 2. (b) PCoA of taxonomic profiles of microbial 

communities without the OTU relatively to S. aureus between the three areas: Antecubial Creases (Ac), Popliteal Creases (Pc) 

and volar forearm (Vf); Coordinate 1 versus Coordinate 3. (c) PCoA of taxonomic profiles of microbial communities between the 

three areas: Antecubial Creases (Ac), Popliteal Creases (Pc) and Volar Forearm (Vf); Coordinate 1 versus Coordinate 2. (d) 
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PCoA of taxonomic profiles of microbial communities between the three areas: Antecubial Creases (Ac), Popliteal Creases (Pc) 

and volar forearm (Vf); Coordinate 1 versus Coordinate 3	

Observing the PCoA results from Figure 17, it can be concluded that there are no significant 

changes in the results shown in Figure 15 when extracting the OTU referent to S. aureus. This 

analysis was made in order to understand whether abundance relationships between the other 

members of the microbial community were not dwarfed in the previous analysis, especially in cases 

where S. aureus abundances were extremely high. After removing S. aureus from the OTU table and 

rearranging the relative abundances of all other species accordingly, no significant differences in the 

overall analysis output were observed. This absence of effect after removing S. aureus from the data 

may be due to the fact that, after all, only a few samples in the entire dataset possess extremely high 

S. aureus abundances whereas the majority display low to moderate S. aureus levels which may not 

compromise substantially the abundance relationships of the other microbiome members.  

Table 5 | Summary of One-Way PERMANOVA carried out for the whole dataset without S. aureus (N=183). Results of the 

Permutation test. 

Permutation N: 9999 

Total sum of squares: 28.74 

Within-group sum of squares: 26.59 

F: 7.285 

p (same): 0.0001 

Results of the permutational Analysis of Variance for the distance matrix with 9999 permutations, supporting statistical differences between the 

three sites (Ac, Pc and Vf), disregarding differences in S. aureus abundances, with a p-value of 0.0001.  

Table 6 | Pairwise of One-Way PERMANOVA carried out for the whole dataset without S. aureus. Significant values are in 

bold. 

 Ac Pc Vf 

Ac  0.0003 0.0441 

Pc 0.0003  0.0003 
Vf 0.0441 0.0003  

Results of the permutational Analysis of Variance for the distance matrix with 9999 permutations, supporting statistical differences between the 

three sites (Ac, Pc and Vf), disregarding differences in S. aureus abundances, with a p-value of 0.0001.  

Overall, the results of PERMANOVA permutation test did not show, as the PCoA analysis, 

relevant changes, comparing to the results of Table 2 and 3.  

Also there were no significant results from SIMPER analysis comparing Table 4 with Table 7. 
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Table 7 | Results from SIMPER analysis of all samples without S. aureus. SIMPER analysis identifying the percentage 

contribution of each OTU according to the Bray Curtis dissimilarity metric between Ac, Pc and Vf.  

Taxon Av. dissim Contrib. % Cumulative % Mean Ac Mean Pc Mean Vf 

Root;k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actino

mycetales;f__Propionibacteriaceae;g__Propionibacterium;s__ac
nes 

1.468 2.603 2.603 0.493 0.245 0.513 

Root;k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actino

mycetales;f__Corynebacteriaceae;g__Corynebacterium;s__ 

1.083 1.92 4.523 0.356 0.493 0.401 

Root;k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o

__Pseudomonadales;f__Pseudomonadaceae;g__Pseudomonas;
s__ 

0.6045 1.072 5.595 0.1 0.0712 0.12 

Root;k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__

Streptococcaceae;g__Streptococcus;s__ 

0.5273 0.935 6.53 0.199 0.127 0.189 

Root;k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staph

ylococcaceae;g__Staphylococcus;s__ 

0.4703 0.834 7.364 0.184 0.17 0.154 

Root;k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staph

ylococcaceae;g__Staphylococcus;s__succinus 

0.4207 0.7459 8.11 0.144 0.121 0.118 

Root;k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f_

_[Tissierellaceae];g__Anaerococcus;s__ 

0.348 0.617 8.727 0.0701 0.126 0.0863 

Root;k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f_

_[Tissierellaceae];g__Peptoniphilus;s__ 

0.3424 0.6071 9.334 0.0434 0.0969 0.0489 

Root;k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actino

mycetales;f__Propionibacteriaceae;g__Propionibacterium;s__gr
anulosum 

0.3379 0.5991 9.933 0.108 0.0527 0.119 

Root;k__Bacteria;p__Cyanobacteria;c__Chloroplast;o__Streptoph

yta;f__;g__;s__ 

0.3134 0.5557 10.49 0.0868 0.0505 0.0633 

(...)       

Root;k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staph

ylococcaceae;g__Staphylococcus;s__epidermidis 

0.2742 0.4862 13.03 0.0954 0.0706 0.0762 

Similarity percentage analysis of the OTU diferences between the different sites Ac, Pc and Vf. The first collumn identifies the OTU explained by 

that row, the second collumn represents the average of dissimilarity ,the third collumn shows the % dissimilarity explained by that OTU, the fourth 

column is related to the cumulative Bray-Curtis dissimilarity metric for the OTU thus far represented in the table and the last three show mean 

abundance at site Ac, mean abundance at site Pc and mean abundance at site Vf. 

3.2.2 Taxonomic Analysis at the OTU level of Samples from Antecubital Creases  

a)     b) 

 

 

Figure 18 | Principal Coordinates Analysis (PCoA) at OTU profiles retrived for Antecubital Creases (Ac) Samples 
(N=60). PCoA performed on Bray-Curtis dissimilarity index calculated from Hellinger transformed data. (a) PCoA of taxonomic 

profiles of microbial communities of Ac according to the relative percentage of S. aureus in the samples; A (0-1%), B (1-2%), C 
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(2-5%), D (5-10%) and E (More than 10%); Coordinate 1 versus Coordinate 2. (b) PCoA of taxonomic profiles of microbial 

communities of Ac according to the relative percentage of S. aureus in the samples; Coordinate 1 versus Coordinate 3.  

Observing Figure 18, it is clear that groups D and E are the most obvious and concise clusters 

altogether, consistently suggesting that high abundance of S. aureus impacts considerably the 

structure of the skin microbiome. Clearly there is an influence of the percentage of S. aureus. 

However, there is no clear partition of microbiome structure between groups A, B and C.  

Although in graphic a) it seems that groups A and B have similar feautures, in graphic b), from 

another perspective, the communities are not so similar. It is very important to be concerned when 

analysing 2D graphics, because what we are observing may not be what it seems. In the future, a 3D 

chart will be a necessary tool in order to have a clearer view of the relationship between the groups.  

Attending to the results of graphic b), there is a big difference between the samples from the 

group A at the lower right quadrant and at the upper left quadrant. This reveals that there are other 

factors, including stochastic variability, shaping the structure of the skin microbiome in situations 

where the percentage of S. aureus is low.  

Table 8 | Summary of One-Way PERMANOVA performed on Antecubital Creases (Ac) Samples (N=60) to test 

community variation according to increasing abundances of S. aureus. Results of the Permutation test.  

Permutation N: 9999 

Total sum of squares: 8.711 

Within-group sum of squares: 5.627 

F: 7.535 

p (same): 0.0001 

Results of the permutational Analysis of Variance for the distance matrix with 9999 permutations, supporting statistical differences between the 

samples of Ac with a p-value of 0.0001. 

Table 9| Pairwise of One-Way PERMANOVA performed on Ac samples to test for skin community variation according 
to increasing abundances of S. aureus. Significant values are in bold 

  A E C B D 

A  0.003 0.001 0.109 0.001 

E 0.003  0.003 0.009 0.008 

C 0.001 0.003  0.002 0.001 

B 0.109 0.009 0.002  0.001 

D 0.001 0.008 0.001 0.001  

Results of the permutational Analysis of Variance for the distance matrix with 9999 permutations, supporting statistical differences between the 

samples of Ac with a p-value of 0.0001. 

In Table 9, almost of the values are in bold. The values in bold are statistically relevant, in 

other words, there are significant dissimilarities between the samples related to those groups, in spite 

of the overlap between sample groups observed in Figures 18a and b. 



37		

Also, from Table 9 is possible to observe that there is no statistical significance between group 

A and B. In other words, the microbial community, from the samples with one to two percent of S. 

aureus are not significantly different from samples with zero to one percent. However in Figure 18, it is 

possible to see that there is a large extent of variability in structure of samples from group B, some of 

the samples are in fact similar to samples within group A but others are not. These two disparities can 

be due to other external factors or may be due to the slightest difference of percentage of S. aureus 

comparing to group A.  

Table 10 | Results from SIMPER analysis of Ac samples. SIMPER analysis identifying the percentage contribution of each 

OTU according to the Bray Curtis dissimilarity metric between groups A, B, C, D and E.  

Taxon Av. dissim Contrib. % Cumulative % Mean A Mean B Mean C Mean D Mean E 

Root;k__Bacteria;p__Actinobacteria;c__Actinoba

cteria;o__Actinomycetales;f__Propionibacteriacea

e;g__Propionibacterium;s__acnes 

1.348 2.442 2.442 0.574 0.588 0.409 0.521 0.0245 

Root;k__Bacteria;p__Actinobacteria;c__Actinoba

cteria;o__Actinomycetales;f__Corynebacteriaceae;

g__Corynebacterium;s__ 

1.124 2.036 4.478 0.202 0.358 0.442 0.478 0.195 

Root;k__Bacteria;p__Firmicutes;c__Bacilli;o__Ba

cillales;f__Staphylococcaceae;g__Staphylococcu

s;s__aureus 

0.917 1.661 6.138 0.0803 0.112 0.19 0.242 0.596 

Root;k__Bacteria;p__Proteobacteria;c__Gammap

roteobacteria;o__Pseudomonadales;f__Pseudomo

nadaceae;g__Pseudomonas;s__ 

0.6626 1.2 7.338 0.219 0.0627 0.0651 0.0375 0.00523 

Root;k__Bacteria;p__Firmicutes;c__Bacilli;o__Ba

cillales;f__Staphylococcaceae;g__Staphylococcu
s;s__ 

0.5995 1.086 8.424 0.103 0.135 0.212 0.191 0.409 

Root;k__Bacteria;p__Firmicutes;c__Bacilli;o__Ba

cillales;f__Staphylococcaceae;g__Staphylococcu
s;s__succinus 

0.5956 1.079 9.503 0.0707 0.0817 0.159 0.173 0.386 

Root;k__Bacteria;p__Firmicutes;c__Bacilli;o__La

ctobacillales;f__Streptococcaceae;g__Streptococ
cus;s__ 

0.4934 0.8936 10.4 0.162 0.163 0.253 0.216 0.122 

Root;k__Bacteria;p__Firmicutes;c__Bacilli;o__Ba

cillales;f__Staphylococcaceae;g__Staphylococcu
s;s__epidermidis 

0.395 0.7153 11.11 0.0475 0.0616 0.104 0.0982 0.273 

Root;k__Bacteria;p__Cyanobacteria;c__Chloropl

ast;o__Streptophyta;f__;g__;s__ 

0.3563 0.6453 11.76 0.1 0.114 0.0814 0.0708 0 

Root;k__Bacteria;p__Proteobacteria;c__Gammap

roteobacteria;o__Enterobacteriales;f__Enterobact
eriaceae;g__;s__ 

0.3133 0.5674 12.32 0.121 0.0628 0.0653 0.0366 0.00393 

Similarity percentage analysis of the OTU diferences between the different groups of samples according to the relative frequency of S. aureus. 

The first collumn identifies the OTU explained by that row, the second collumn represents the average of dissimilarity ,the third collumn shows the 

% dissimilarity explained by that OTU, the fourth column is related to the cumulative Bray-Curtis dissimilarity metric for the OTU thus far 

represented in the table and the last five show mean abundance of group A (0-1%), B (1-2%), C (2-5%), D (5-10%) and E (More than 10%). 

For the same reason as metioned when analysing Table 3, in this table the top ten results 

from the SIMPER analysis done for the Ac location only are listed, with a row for Staphylococcus 

epidermidis. 

Therefore, it is also demanding to know if there is any interesting correlation between top 10 

OTU results from this SIMPER analysis and S. aureus.  
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Figure 19 | Linear Regression between the abundance of the ten most group-differentiating OTUs revealed by SIMPER 

analysis of Ac samples and S. aureus. The data used for this linear regressions were Hellinger transformed. 

The results of these linear regressions are in agreement with the results obtained in the 

analysis of the entire dataset. There are three positive correlations between S. aureus and 

Staphylococcus sp., S. succinus and S. epidermidis. And again the better positive correlation is 

between S. aureus and S. succinus with a high regression coefficient (r2=0.9554).	These conclusions 

reinforce the relationship between S. aureus and these bacteria. The relationship of P. acnes with S. 

aureus appears to be correlated negatively as it was observed also in Figure 16, which emphasizes 

their relationship.  

The conclusions of the relationship of S. aureus with Corynebacterium sp. in Ac are only 

slightly different from those of the entire dataset. Here we can observe that the behaviour of 

Corynebacterium sp. is generally similar when the abundance of S. aureus is low or very high, while 

Figure 15 revealed a tendency for lower abundances of Corynebacterium in samples with S. aureus 

percentages higher than 10%. However, the robustness of these conclusions is affected by the fact 

that we have less samples with high S. aureus abundance in Ac than for the other amounts, 

precluding us to anticipate which would be the response of the other species in high S. aureus 

percentages with high accuracy. Once again these observations reinforce that Corynebacterium 

“resists” to high abundance of S. aureus, which agrees with the literature that says they are 

competitors (Ramsey et al., 2016). 

The relationship between the other species and S. aureus all stil not clear, because, as 

metioned before either they show high abundances (in some samples only) when S. aureus 

abundance is very low or they show low abundance only when S. aureus is very high.  

3.2.3 Taxonomic Analysis at the OTU level of Samples from Popliteal Creases 

a)     b) 

 

 

Figure 20 | Principal Coordinates Analysis (PCoA) at OTU profiles retrived for Popliteal Creases (Pc) Samples (N=76). 

PCoA performed on Bray-Curtis dissimilarity index calculated from Hellinger transformed data. (a) PCoA of taxonomic profiles of 

microbial communities of Pc according to the relative percentage of S. aureus in the samples; A (0-1%), B (1-2%), C (2-5%), D 
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(5-10%) and E (More than 10%); Coordinate 1 versus Coordinate 2. (b) PCoA of taxonomic profiles of microbial communities of 

Pc according to the relative percentage of S. aureus in the samples; Coordinate 1 versus Coordinate 3. 

  Taking into account the results obtained via PCoA for the Pc taxonomic data, there is no 

evidence of formation of clusters, as it was also concluded for Ac PCoA results. The samples are very 

dispersed so it is impossible to take conclusions about if the microbiome of the samples are or are not 

similar. For a better understanding, the permutation test PERMANOVA was carried out (Table 11). 

Table 11 | Summary of One-Way PERMANOVA performed on Popliteal Creases (Pc) Samples (N=76) to test for skin 
community variation according to increasing abundances of S. aureus. Results of the Permutation test. 

Permutation N: 9999 

Total sum of squares: 10.96 

Within-group sum of squares: 8.097 

F: 6.278 

p (same): 0.0001 

Results of the permutational Analysis of Variance for the distance matrix with 9999 permutations, supporting statistical differences between the 

samples of Pc with a p-value of 0.0001. 

Table 12 | Pairwise of One-Way PERMANOVA performed on Pc samples to test for skin community variation according 
to increasing abundances of S. aureus. Significant values are in bold. 

  C A E D B 

C   0.001 0.021 0.001 0.001 
A 0.001   0.318 0.001 0.001 

E 0.021 0.318   0.567 0.47 

D 0.001 0.001 0.567   0.001 

B 0.001 0.001 0.47 0.001   

Results of the permutational Analysis of Variance for the distance matrix with 9999 permutations, supporting statistical differences between the 

samples of Pc with a p-value of 0.0001. 

Observing the charts and complementing with the information of PERMANOVA results, it 

seems that the samples from the individuals with high abundance of S. aureus, especially from group 

D, have a somehow distinct microbial community in comparison with other S. aureus abundance 

groups. However, the trends observed here were not as clear as in the Ac site (Figure 18). Indeed, 

noticing Figure 20, the dots of group E did not form a cluster clearly separated from the others. The 

dots that are visible are closer to different groups: A, B and D. This can be grounded by the results of 

Pairwise PERMANOVA (Table 12), which revealed no significant statistical dissimilarities between 

group E and A, B and C. Nevertheless, significant differences between the other groups could be 

observed. 
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Table 13 | Results from SIMPER analysis of Pc samples. SIMPER analysis identifying the percentage contribution of each 

OTU according to the Bray Curtis dissimilarity metric between groups A, B, C, D and E.  

Taxon Av. dissim Contrib. % Cumulative % Mean A Mean B Mean C Mean D Mean E 

Root;k__Bacteria;p__Actinobacteria;c__Actinoba

cteria;o__Actinomycetales;f__Corynebacteriaceae;

g__Corynebacterium;s__ 

0.8881 1.603 1.603 0.508 0.415 0.539 0.434 0.32 

Root;k__Bacteria;p__Actinobacteria;c__Actinoba

cteria;o__Actinomycetales;f__Propionibacteriacea

e;g__Propionibacterium;s__acnes 

0.6748 1.218 2.822 0.173 0.329 0.275 0.177 0.252 

Root;k__Bacteria;p__Firmicutes;c__Bacilli;o__Ba

cillales;f__Staphylococcaceae;g__Staphylococcu

s;s__ 

0.5225 0.9434 3.765 0.0732 0.136 0.184 0.25 0.445 

Root;k__Bacteria;p__Firmicutes;c__Bacilli;o__Ba

cillales;f__Staphylococcaceae;g__Staphylococcu
s;s__aureus 

0.4793 0.8654 4.63 0.061 0.121 0.165 0.239 0.342 

Root;k__Bacteria;p__Firmicutes;c__Clostridia;o_

_Clostridiales;f__[Tissierellaceae];g__Peptoniphil
us;s__ 

0.4501 0.8126 5.443 0.18 0.111 0.0532 0.0617 0.0433 

Root;k__Bacteria;p__Bacteroidetes;c__Bacteroidi

a;o__Bacteroidales;f__Prevotellaceae;g__Prevote
lla;s__ 

0.4042 0.7298 6.173 0.154 0.0574 0.0634 0.0204 0.00889 

Root;k__Bacteria;p__Firmicutes;c__Clostridia;o_

_Clostridiales;f__[Tissierellaceae];g__Anaerococc
us;s__ 

0.3857 0.6965 6.869 0.18 0.152 0.0932 0.0971 0.0654 

Root;k__Bacteria;p__Proteobacteria;c__Gammap

roteobacteria;o__Pseudomonadales;f__Pseudomo

nadaceae;g__Pseudomonas;s__ 

0.377 0.6808 7.55 0.127 0.0863 0.036 0.0494 0.0658 

Root;k__Bacteria;p__Firmicutes;c__Clostridia;o_

_Clostridiales;f__[Tissierellaceae];g__Finegoldia;
s__ 

0.3747 0.6765 8.227 0.131 0.155 0.0667 0.0634 0.0473 

Root;k__Bacteria;p__Firmicutes;c__Bacilli;o__Ba

cillales;f__Staphylococcaceae;g__Staphylococcu
s;s__succinus 

0.3703 0.6686 8.895 0.0541 0.0961 0.129 0.185 0.297 

(...)         

Root;k__Bacteria;p__Firmicutes;c__Bacilli;o__Ba

cillales;f__Staphylococcaceae;g__Staphylococcu
s;s__epidermidis 

0.243 0.4388 18.56 0.0338 0.054 0.0777 0.0874 0.264 

Similarity percentage analysis of the OTU diferences between the diferent groups of samples according to the relative frequency of S. aureus. The 

first collumn identifies the OTU explained by that row, the second collumn represents the average of dissimilarity ,the third collumn shows the % 

dissimilarity explained by that OTU, the fourth column is related to the cumulative Bray-Curtis dissimilarity metric for the OTU thus far represented 

in the table and the last five show mean abundance of group A (0-1%), B (1-2%), C (2-5%), D (5-10%) and E (More than 10%). 
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Figure 21 | Linear Regression between the abundance of the ten most group-differentiating OTUs revealed by SIMPER 
analysis of Pc samples and S. aureus. The data used for this linear regressions were Hellinger transformed. 

The results from these linear regressions are slightly different from those of Ac. There is still a 

good positive linear correlation between S. aureus and Staphylococcus sp. and S. succinus. 

Notwithstanding, S. epidermidis has still a positive correlation with S. aureus, however much less 

pronounced than in Ac. There is a “big jump” when looking to the samples with high abundance of S. 

aureus and the ones with low and medium abundance. It seems that, when we are towards high 

percentage of S. aureus there is a sudden and sharp increase of S. epidermidis abundance. If tooking 

out the samples from group E, for sure that will result in a smoother positive linear correlation.  
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 About the charts related to the relationship between S. aureus and Corynebacterium sp. and 

P. acnes, it must be taken into account that there is not enough number of samples from group E. 

Nevertheless, the results reveal no correlation when we look to the horizontal line that reflects these 

relationships, contrasting previous observations on the inverse relationship between S. aureus and P. 

acnes (all data and Ac).  

 Concerning Prevotella and Pseudomonas sp., these OTUs were found to display extremely 

low abundances already when S. aureus abundances were only moderate, suggesting these 

organisms are highy suppressed by the presence of S. aureus on human skin, particularly in Pc sites.

 Regarding Peptinophilus, Anaerococcus and Finegaldia the only correlation is that these three 

species are very abundant when there are low abundance of S. aureus. For medium and high 

percentage of S. aureus, the proportion of these three bacteria stabilizes.  

3.2.4 Taxonomic Analysis at the OTU level of Samples from Volar Forearm 

a)       b) 

 

 

Figure 22 | Principal Coordinates Analysis (PCoA) at OTU profiles retrived for Volar Forearm (Vf) Samples (N=47). PCoA 

performed on Bray-Curtis dissimilarity index calculated from Hellinger transformed data. (a) PCoA of taxonomic profiles of 

microbial communities of Vf according to the relative percentage of S. aureus in the samples; A (0-1%), B (1-2%), C (2-5%), D 

(5-10%) and E (More than 10%); Coordinate 1 versus Coordinate 2. (b) PCoA of taxonomic profiles of microbial communities of 

Vf according to the relative percentage of S. aureus in the samples; Coordinate 1 versus Coordinate 3. 

This PCoA demonstrates that, overall, there was no clear formation of clusters and it seems 

that all the samples had a similar microbial community. Exception to this are samples from group E in 

chart b), whereby it is conclusive that these samples have a microbial community very different from 

the other samples. For further information about possible differences in microbiome structure, it is 

necessary to analyse the PERMANOVA results. 

Table 14 | Summary of One-Way PERMANOVA performed on Volar Forearm (Vf) Samples (N=47) to test for skin 
community variation according to increasing abundances of S. aureus. Results of the Permutation test. 
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Permutation N: 9999 

Total sum of squares: 6.526 

Within-group sum of squares: 4.956 

F: 3.326 

p (same): 0.0001 

Results of the permutational Analysis of Variance for the distance matrix with 9999 permutations, supporting statistical differences between the 

samples of Vf with a p-value of 0.0001. 

Table 15 | Pairwise of One-Way PERMANOVA performed on Vf samples to test for skin community variation according 
to increasing abundances of S. aureus. Significant values are in bold. 

 E B A C D 

E  0.001 0.0021 0.0082 0.0157 

B 0.001  0.0096 0.0612 0.0021 

A 0.0021 0.0096  0.012 0.0001 

C 0.0082 0.0612 0.012  0.0014 

D 0.0157 0.0021 0.0001 0.0014  

Results of the permutational Analysis of Variance for the distance matrix with 9999 permutations, supporting statistical differences between the 

samples of Vf with a p-value of 0.0001. 

According to Pairwise results, there are no dissimilar significant statistical results between 

groups B and C, which is in accordance with the results of the PCoA charts. These two groups have 

short distances in between. All the other groups from Vf site have significant dissimilarities.  

Table 16 | Results from SIMPER analysis of Vf samples. SIMPER analysis identifying the percentage contribution of each 

OTU according to the Bray Curtis dissimilarity metric between groups A, B, C, D and E.  

Taxon Av. dissim Contrib. % Cumulative % Mean A Mean B Mean C Mean D Mean E 

Root;k__Bacteria;p__Actinobacteria;c__Actinoba

cteria;o__Actinomycetales;f__Propionibacteriacea

e;g__Propionibacterium;s__acnes 

1.216 2.271 2.271 0.607 0.512 0.437 0.596 0.0422 

Root;k__Bacteria;p__Actinobacteria;c__Actinoba

cteria;o__Actinomycetales;f__Corynebacteriaceae;

g__Corynebacterium;s__ 

1.119 2.091 4.362 0.345 0.368 0.493 0.464 0.436 

Root;k__Bacteria;p__Proteobacteria;c__Gammap

roteobacteria;o__Pseudomonadales;f__Pseudomo

nadaceae;g__Pseudomonas;s__ 

0.832 1.554 5.916 0.114 0.188 0.0634 0.0324 0.00692 

Root;k__Bacteria;p__Firmicutes;c__Bacilli;o__La

ctobacillales;f__Streptococcaceae;g__Streptococ
cus;s__ 

0.7283 1.36 7.276 0.212 0.178 0.198 0.196 0.0869 

Root;k__Bacteria;p__Firmicutes;c__Bacilli;o__Ba

cillales;f__Staphylococcaceae;g__Staphylococcu
s;s__aureus 

0.6574 1.228 8.504 0.0812 0.124 0.159 0.234 0.437 

Root;k__Bacteria;p__Firmicutes;c__Bacilli;o__Ba

cillales;f__Staphylococcaceae;g__Staphylococcu
s;s__succinus 

0.3889 0.7264 9.231 0.0723 0.104 0.133 0.165 0.255 

Root;k__Bacteria;p__Firmicutes;c__Clostridia;o_

_Clostridiales;f__[Tissierellaceae];g__Anaerococc
us;s__ 

0.3574 0.6676 9.898 0.0742 0.0749 0.101 0.0667 0.178 

Root;k__Bacteria;p__Firmicutes;c__Clostridia;o_ 0.3387 0.6327 10.53 0.0408 0.0217 0.0362 0.0535 0.239 
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_Clostridiales;f__[Tissierellaceae];g__Peptoniphil
us;s__ 

Root;k__Bacteria;p__Firmicutes;c__Bacilli;o__Ba

cillales;f__Staphylococcaceae;g__Staphylococcu
s;s__ 

0.334 0.6239 11.15 0.112 0.146 0.184 0.178 0.247 

Root;k__Bacteria;p__Proteobacteria;c__Betaprot

eobacteria;o__Neisseriales;f__Neisseriaceae;g__;
s__ 

0.3333 0.6226 11.78 0.0417 0.0792 0.0877 0.0698 0.00692 

(...)         

Root;k__Bacteria;p__Firmicutes;c__Bacilli;o__Ba

cillales;f__Staphylococcaceae;g__Staphylococcu
s;s__epidermidis 

0.1758 0.3284 30.2 0.0559 0.0769 0.0801 0.0929 0.107 

Similarity percentage analysis of the OTU diferences between the different groups of samples according to the relative frequency of S. aureus. 

The first collumn identifies the OTU explained by that row, the second collumn represents the average of dissimilarity ,the third collumn shows the 

% dissimilarity explained by that OTU, the fourth column is related to the cumulative Bray-Curtis dissimilarity metric for the OTU thus far 

represented in the table and the last five show mean abundance of group A (0-1%), B (1-2%), C (2-5%), D (5-10%) and E (More than 10%). 
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Figure 23 | Linear Regression between the abundance of the ten most group-differentiating OTUs revealed by SIMPER 
analysis of Vf samples and S. aureus. The data used for this linear regressions were Hellinger transformed. 

 As in the other linear regression analyses, positive correlations between S. aureus and 

Staphylococcus sp. and S. succinus could be identified. It is clear that these two Staphylococcus 

species have a relationship with S. aureus. Because they all belong to the same genus, it is expected 

that these species share a number of physiological similarities tha may underlie equivalent responses 

to the skin environment and its microbiome, provided that intense competition for the same resources 

does not compromise their co-existence. However, as it was metioned before for the Pc samples, S. 

epidermidis did not show exactly the same pattern of correlation with S. aureus as did the other two 

Staphylococcus species. In fact, in this particular case, we can see a larger extent of variability in the 

relative abundance of S. epidermidis when percentage abundances of S. aureus are low or moderate. 

At the presence of high percentage of S. aureus, there are also high percentage values of S. 

epidermidis.  

 Relatively to Pseudomonas and Streptococcus sp., it seems that there is no significant 

influence by the amount of S. aureus in the samples. For Neisseriaceae sp. it seems also that there is 

no significant influence when the abundance of S. aureus is low to moderate. However, when it is in 

the presence of more S. aureus it disappears. These observations are once more in line with the fact 

that, usually, when in the presence of high abundance of S. aureus the diversity of the total microbial 

community in the skin is low (Kong, 2012). 

 In accordance with results from the other sites, in Vf samples, P. acnes had a negative linear 

correlation with S. aureus. Regarding Corynebacterium sp. no correlation with S. aureus was found to 

exist, because even when it is in the presence of high abundance of S. aureus it seems that nothing 

had changed. For Anaerococcus, it was observed that it displays high abundances when the 

abundance of S. aureus is likewise very high. Last but not least, Peptoniphilus had a curious positive 
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linear correlation with S. aureus. This last observation was not found in the other areas or even in the 

global analysis.   

3.3 Functional Analysis 

3.3.1 Functional Analysis of All the Samples 

a)          b) 

 

 

c)        d) 

 

 

Figure 24 | Principal Coordinates Analysis (PCoA) of IPR profiles retrieved for All Samples (N=183). PCoA performed on 

Bray-Curtis dissimilarity index calculated from Hellinger transformed data. (a) PCoA of IPR profies from the microbial community 

of the three areas: Antecubial Creases (Ac), Popliteal Creases (Pc) and Volar Forearm (Vf); Coordinate 1 versus Coordinate 2. 

(b) PCoA of IPR profiles from the microbial community between the three areas: Antecubial Creases (Ac), Popliteal Creases 

(Pc) and Volar Forearm (Vf); Coordinate 1 versus Coordinate 3. (c) PCoA of IPR profiles from the microbial community 

according to the relative percentage of S. aureus in the samples; A (0-1%), B (1-2%), C (2-5%), D (5-10%) and E (More than 

10%); Coordinate 1 versus Coordinate 2. (d) PCoA of IPR profiles from the microbial community according to the relative 

percentage of S. aureus in the samples; Coordinate 1 versus Coordinate 3.  
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No particular functional clusters were formed according to the site of origin of the samples 

(Figure 24 a) and b)). In graphs c) and d), in general, the the distances between samples of the same 

group are smaller suggesting that, after all, the clusters are formed, to a higher extent, according to 

the similarities of the percentage of S. aureus in the samples than site of origin. However, still a large 

overlap between samples of different groups was observed, with exception of group E. Therefore, a 

permutational test – PERMANOVA – was performed t test for eventual significant differences in skin 

microbiome functional profiles according to site of origin and % S. aureus.  

Table 17 | Summary of One-Way PERMANOVA for skin microbiome functional profiles per site. Results of the 

Permutation test. 

Permutation N: 9999 

Total sum of squares: 3.639 

Within-group sum of squares: 3.351 

F: 7.732 

p (same): 0.0001 

Results of the permutational Analysis of Variance for the distance matrix with 9999 permutations, supporting statistical differences between the 

samples according to the area (Ac, Pc and Vf), disregarding differences in S. aureus abundances, with a p-value of 0.0001. 

Table 18 | Summary of One-Way PERMANOVA for skin microbiome functional profiles according to percentage of S. 

aureus in the samples.  

Permutation N: 9999 

Total sum of squares: 3.639 

Within-group sum of squares: 3.019 

F: 9.125 

p (same): 0.0001 

Results of the permutational Analysis of Variance for the distance matrix with 9999 permutations, supporting statistical differences between the 

samples with a p-value of 0.0001 

Both One-Way PERMANOVA tests suggest that there were significant differences in 

functional profiles between groups. Paiwise PERMANOVA tests were then run to determine which 

groups, for each comparison, were significantly different from the others. 

Table 19| Pairwise of One-Way PERMANOVA for skin microbiome functional profiles per site. Significant values are in 

bold. 

 Ac Pc Vf 

Ac  0.0003 0.0666 

Pc 0.0003  0.0003 

Vf 0.0666 0.0003  
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Results of the permutational Analysis of Variance for the distance matrix with 9999 permutations, supporting statistical differences between the 

samples according to the area (Ac, Pc and Vf), disregarding differences in S. aureus abundances, with a p-value of 0.0001. 

Through the analysis of Table 19, it is possible to verify that samples of Ac and Vf were not 

statistically different from the functional point of view. In this case the PERMANOVA test corroborates 

the pattern of distribution of Ac and Vf samples in the ordination charts (Figure 24), in which a large 

overlap between samples can be observed.  

Table 20| Pairwise One-Way PERMANOVA for skin microbiome functional profiles according to percentage of S. 

aureus in the samples. Significant values are in bold. 

 A E C B D 

A  0.001 0.001 0.906 0.001 

E 0.001  0.001 0.001 0.001 
C 0.001 0.001  0.001 0.008 

B 0.906 0.001 0.001  0.001 

D 0.001 0.001 0.008 0.001  

Results of the permutational Analysis of Variance for the distance matrix with 9999 permutations, supporting statistical differences between the 

samples with a p-value of 0.0001 

The same is reflected by analysing Table 20 that there is no statistical significance between 

the IPR profiles from the microbial communities that are represented as group A and B. All the other 

groups were found to differ from one another in functional terms in spite of a certain degree of overlap 

of the samples in the ordination space (Figure 24).  

To rank all of the IPRs that contribute the most to the total variation of the dataset, a SIMPER 

analysis of all samples was carried out. The results are summarized in Table 21.  

Table 21 | Results from SIMPER analysis on functional (IPR) profiles of all samples. SIMPER analysis identifying the 

percentage contribution of each IPR according to the Bray Curtis dissimilarity metric between Ac, Pc and Vf.  

Taxon Av. dissim Contrib. % Cumulative % Mean Ac Mean Pc Mean Vf 

Transposase, L1 0.01992 0.1011 0.1011 0.0238 0.006 0.0103 

EAL domain 0.01659 0.08415 0.1852 0.0248 0.0251 0.0239 

Transposase, mutator type 0.01653 0.08384 0.2691 0.0341 0.0483 0.0353 

CAMP factor 0.01494 0.0758 0.3449 0.0283 0.0142 0.0292 

Domain of unknown function DUF1725 0.01461 0.07409 0.419 0.0163 0.00575 0.00712 

WD40/YVTN repeat-like-containing domain 0.01414 0.07173 0.4907 0.0375 0.0311 0.041 

Amino acid permease/ SLC12A domain 0.01398 0.07094 0.5616 0.0483 0.0332 0.0498 

TonB-dependent receptor, beta-barrel 0.01393 0.07069 0.6323 0.0277 0.028 0.0279 

RNA polymerase sigma factor 54 interaction 

domain 

0.01264 0.06411 0.6964 0.02 0.0215 0.0196 

Protein of unknown function DUF576 0.01252 0.06351 0.7599 0.0134 0.00623 0.00998 

Similarity percentage analysis of IPR shifts in abundance across the different sites Ac, Pc and Vf. The first collumn identifies the IPR explained by 

that row, the second collumn represents the average of dissimilarity the third collumn shows the % dissimilarity explained by that IPR, the fourth 
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column is related to the cumulative Bray-Curtis dissimilarity metric for the IPR thus far represented in the table and the last three show mean 

abundance per sites: Ac, mean abundance at locus Pc and mean abundance at locus Vf. 

3.3.2 Functional Analysis of Samples from Antecubital Creases 

a)          b) 

 

 

Figure 25 | Principal Coordinates Analysis (PCoA) of IPR profiles retrieved for Antecubital Creases (Ac) Samples 
(N=60). PCoA performed on Bray-Curtis dissimilarity index calculated from Hellinger transformed data. (a) PCoA of IPR profiles 

from the microbial community of Ac according to the relative percentage of S. aureus in the samples; A (0-1%), B (1-2%), C (2-

5%), D (5-10%) and E (More than 10%); Coordinate 1 versus Coordinate 2. (b) PCoA of IPR profiles from the microbial 

community of Ac according to the relative percentage of S. aureus in the samples; Coordinate 1 versus Coordinate 3. 

 It is easy to identify that groups D and E are more separate than the others, in other words it 

means that IPRs from group D and E are more similar in between samples than the others that are 

more scattered. Although dispersed, it is identifiable that de dots from group A, B and C are closer to 

each other, which may mean that even though the microbial communities have different abundance in 

Staphylococcus aureus that is not reflected in IPRs abundance. 

Table 22 | Summary of One-Way PERMANOVA of skin microbiome functional (IPR) profiles from the Antecubital 

Creases (Ac) sites. Results of the Permutation test. 

Permutation N: 9999 

Total sum of squares: 1.197 

Within-group sum of squares: 0.6714 

F: 10.77 

p (same): 0.0001 

Results of the permutational Analysis of Variance for the distance matrix with 9999 permutations, supporting statistical differences between the 

samples of Ac with a p-value of 0.0001 
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Table 23 | Pairwise One-Way PERMANOVA of skin microbiome functional (IPR) profiles from the Ac site. Significant 

values are in bold. 

 A E C B D 

A  0.002 0.001 0.013 0.001 

E 0.002  0.004 0.006 0.004 

C 0.001 0.004  0.298 0.001 

B 0.013 0.006 0.298  0.001 
D 0.001 0.004 0.001 0.001  

Results of the permutational Analysis of Variance for the distance matrix with 9999 permutations, supporting statistical differences between the 

samples of Ac with a p-value of 0.0001 

In spite of the previous observation, the only IPR profiles found to show no statistical 

significance with one another were those from groups B and C. Once again, it is clear the importance 

of applying the PERMANOVA test to verify patterns of sample distribution in the ordination graphs.  

According to Table 23, all of the other comparisons were significantly different.  

To rank all of the IPRs that contribute the most to the total variation of the Ac dataset, a 

SIMPER analysis was performed. The results are summarized in Table 24.  

Table 24 | Results from SIMPER analysis on functional (IPR) profiles of Ac samples. SIMPER analysis identifying the 

percentage contribution of each IPR according to the Bray Curtis dissimilarity metric between groups A, B, C, D and E.  

Taxon Av. dissim Contrib. % Cumulative % Mean A Mean B Mean C Mean D Mean E 

Transposase, L1 0.03483 0.1746 0.1746 0.0158 0.00514 0.0557 0.0173 0.0042 

Domain of unknown function 

DUF1725 

0.0241 0.1208 0.2953 0.0118 0.00378 0.0375 0.0111 0.00196 

Protein of unknown function DUF576 0.02261 0.1133 0.4086 0.00212 0.00442 0.00635 0.0228 0.09 

Endonuclease/exonuclease/phosphat

ase 

0.0188 0.09419 0.5028 0.0281 0.0289 0.0554 0.0329 0.0124 

EAL domain 0.01702 0.08531 0.5881 0.0387 0.0231 0.0232 0.0153 0.00348 

Protein G-related, albumin-binding 

GA module 

0.0161 0.08066 0.6688 0.00416 0.00702 0.0103 0.0186 0.0656 

Domain of unknown function 

DUF1542 

0.01484 0.07435 0.7431 0.00751 0.0117 0.0173 0.0215 0.0618 

Leukocidin/porin 0.01455 0.07293 0.8161 0.000428 0.000261 0.00297 0.0156 0.054 

TonB-dependent receptor, beta-

barrel 

0.01439 0.0721 0.8882 0.0407 0.0257 0.024 0.0215 0.00959 

FIVAR domain 0.0135 0.06766 0.9558 0.00447 0.00744 0.0103 0.0166 0.0555 

Similarity percentage analysis of IPR shifts in abundance between the different groups of samples according to the relative frequency of S. 

aureus. The first collumn identifies the IPR explained by that row, the second collumn represents the average of dissimilarity the third collumn 

shows the % dissimilarity explained by that IPR, the fourth column is related to the cumulative Bray-Curtis dissimilarity metric for the IPR thus far 

represented in the table and the last five show mean abundance of group A (0-1%), B (1-2%), C (2-5%), D (5-10%) and E (More than 10%). 
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3.3.3 Functional Analysis of Samples from Popliteal Creases 

        a)      b) 

 

        

Figure 26 | Principal Coordinates Analysis (PCoA) of IPR profiles retrieved for Popliteal Creases (Pc) Samples (N=76). 
PCoA performed on Bray-Curtis dissimilarity index calculated from Hellinger transformed data. (a) PCoA of IPR profiles from the 

microbial community of Pc according to the relative percentage of S. aureus in the samples; A (0-1%), B (1-2%), C (2-5%), D (5-

10%) and E (More than 10%); Coordinate 1 versus Coordinate 2. (b) PCoA of IPR profiles from the microbial community of Pc 

according to the relative percentage of S. aureus in the samples; Coordinate 1 versus Coordinate 3. 

There is a lot of dispersion of the samples which may indicate that the IPRs are dissimilar or 

so similar between samples that even when comparing samples with the different abundance of S. 

aureus is not possible to identify distinct clusters. 

Table 25 | Summary of One-Way PERMANOVA of skin microbiome functional (IPR) profiles from the Pc site. Results of 

the Permutation test. 

Permutation N: 9999 

Total sum of squares: 1.327 

Within-group sum of squares: 1.04 

F: 4.894 

p (same): 0.0001 

Results of the permutational Analysis of Variance for the distance matrix with 9999 permutations, supporting statistical differences between the 

samples of Pc with a p-value of 0.0001 
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Table 26 | Pairwise One-Way PERMANOVA of skin microbiome functional (IPR) profiles from the Pc site. Significant 

values are in bold.  

 C A E D B 

C  0.001 0.152 0.004 0.007 

A 0.001  0.466 0.001 0.005 

E 0.152 0.466  0.086 0.086 

D 0.004 0.001 0.086  0.09 

B 0.007 0.005 0.086 0.09  

Results of the permutational Analysis of Variance for the distance matrix with 9999 permutations, supporting statistical differences between the 

samples of Pc with a p-value of 0.0001 

Observing the results from Tables 25 and 26, it is intriguing that all of the IPRs from the 

samples of group E, with high abundance of S. aureus are statistically similar. These results were in 

principle not expected, since it was hypothesized that samples with higher abundance of this species 

that is, until now, the most studied bacterium implicated with AD, would present a disruption in 

function. Because only two samples belonging to site E were included in the Pc analysis, it is likely 

that the lack of significance results from low robustness of the permutational test when very few 

samples (observations) are considered. Another interesting result is that IPRs from samples with 1-2% 

and 5-10% are more similar to one another than for example with samples with nearest S. aureus 

percentage values. 

To rank all of the IPRs that contribute the most to the total variation of the Pc dataset, 

SIMPER analysis was performed. The results are summarized in Table 27.  

Table 27 | Results from SIMPER analysis on functional (IPR) profiles of Pc samples. SIMPER analysis identifying the 

percentage contribution of each IPR according to the Bray Curtis dissimilarity metric between groups A, B, C, D and E.  

Taxon Av. dissim Contrib. % Cumulative % Mean A Mean B Mean C Mean D Mean E 

Transposase, mutator type 0.01755 0.09492 0.09492 0.0516 0.0471 0.0508 0.0412 0.034 

EAL domain 0.01678 0.09077 0.1857 0.0229 0.0321 0.0177 0.0384 0.0189 

TonB-dependent receptor, beta-barrel 0.01405 0.07597 0.2617 0.0367 0.0326 0.0211 0.0266 0.0258 

NAD(P)-binding domain 0.01309 0.0708 0.3325 0.147 0.164 0.153 0.17 0.154 

WD40/YVTN repeat-like-containing domain 0.01281 0.0693 0.4018 0.0272 0.0297 0.0314 0.0374 0.0311 

Winged helix-turn-helix DNA-binding domain 0.01271 0.06872 0.4705 0.119 0.13 0.121 0.129 0.124 

RNA polymerase sigma factor 54 interaction 

domain 

0.01258 0.06802 0.5385 0.0225 0.0252 0.0162 0.0294 0.0137 

Aldehyde oxidase/xanthine dehydrogenase, 

molybdopterin binding 

0.01227 0.06635 0.6048 0.0196 0.0274 0.0207 0.0353 0.0146 

GGDEF domain 0.01188 0.06422 0.6691 0.0163 0.0248 0.0149 0.0279 0.0186 

P-loop containing nucleoside triphosphate 

hydrolase 

0.01123 0.06073 0.7298 0.274 0.266 0.27 0.261 0.25 

Similarity percentage analysis of IPR shifts in abundance between the different groups of samples according to the relative frequency of S. 

aureus. The first collumn identifies the IPR explained by that row, the second collumn represents the average of dissimilarity the third collumn 

shows the % dissimilarity explained by that IPR, the fourth column is related to the cumulative Bray-Curtis dissimilarity metric for the IPR thus far 

represented in the table and the last five show mean abundance of group A (0-1%), B (1-2%), C (2-5%), D (5-10%) and E (More than 10%). 



54		

3.3.4 Functional Analysis of Samples from Volar Forearm 

   a)      b) 

 

 

Figure 27 | Principal Coordinates Analysis (PCoA) of IPR profiles retrieved for Volar Forearm (Vf) Samples (N=47). 
PCoA performed on Bray-Curtis dissimilarity index calculated from Hellinger transformed data. (a) PCoA of IPR profiles from the 

microbial community of Vf according to the relative percentage of S. aureus in the samples; A (0-1%), B (1-2%), C (2-5%), D (5-

10%) and E (More than 10%); Coordinate 1 versus Coordinate 2. (b) PCoA of IPR profiles from the microbial community of Vf 

according to the relative percentage of S. aureus in the samples; Coordinate 1 versus Coordinate 3. 

 From the PCoA ordination diagrams, (Figure 27), it is possible to identify that IPR profiles from 

groups A and B are variable and overlap across the ordination space, that B and C also overlap to 

some extent and that maybe IPR profiles from groups D and E are also similar. 

 It can also be seen that, especially in chart b), clusters from the different samples, accounting 

of their abundance of S. aureus, are well identified, especially concerning the differentiation between 

sites D and E.  

Table 28 | Summary of One-Way PERMANOVA of skin microbiome functional (IPR) profiles from the Volar Forearm (Vf) 
sites. Results of the Permutation test. 

Permutation N: 9999 

Total sum of squares: 0.827 

Within-group sum of squares: 0.6198 

F: 3.51 

p (same): 0.0001 

Results of the permutational Analysis of Variance for the distance matrix with 9999 permutations, supporting statistical differences between the 

samples of Vf with a p-value of 0.0001 
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Table 29 | Pairwise One-Way PERMANOVA of skin microbiome functional (IPR) profiles from the Vf site. Significant 

values are in bold. 

 E B A C D 

E  0.006 0.019 0.072 0.188 

B 0.006  1 0.842 0.062 

A 0.019 1  1 0.005 

C 0.072 0.842 1  0.033 
D 0.188 0.062 0.005 0.033  

Results of the permutational Analysis of Variance for the distance matrix with 9999 permutations, supporting statistical differences between the 

samples of Vf with a p-value of 0.0001 

With the results from the pairwise PERMANOVA, we can confirm some of the assumptions 

made when observing the results of PCoA and also get reliable results of other relationships that are 

not possible to be identified at first sight. For example, the IPR profiles from the samples of group E 

are not significantly different from the ones of groups C and D. For the relationship between groups C 

and E if there were more charts with different coordinates or a 3D chart eventually assessments would 

reveal clearer patterns. Observing the results of the relationship between groups B and A, C, and D, 

as it was told when analysing the results of PCoA, the IPR profiles overlap considerably, so there were 

no significant differences in the functional profiles from these sample groups.  

To rank all of the IPRs that contribute the most to the total variation of the Vf dataset, a 

SIMPER analysis was performed. The results are summarized in Table 30.  

Table 30 | Results from SIMPER analysis on functional (IPR) profiles of Vf samples. SIMPER analysis identifying the 

percentage contribution of each IPR according to the Bray Curtis dissimilarity metric between groups A, B, C, D and E.  

Taxon Av. dissim Contrib. % Cumulative % Mean A Mean B Mean C Mean D Mean E 

EAL domain 0.01821 0.09759 0.09759 0.0236 0.0314 0.0208 0.012 0.00717 

Protein of unknown function DUF576 0.01543 0.08267 0.1803 0.00375 0.00469 0.00369 0.0246 0.0611 

TonB-dependent receptor, beta-barrel 0.01466 0.07852 0.2588 0.0283 0.0329 0.0221 0.0195 0.0234 

Transposase, L1 0.01435 0.07687 0.3357 0.00761 0.0133 0.0161 0.00194 0.0057 

Porin domain 0.01421 0.07612 0.4118 0.0182 0.026 0.0122 0.0086 0.0106 

RNA polymerase sigma factor 54 interaction domain 0.01404 0.07525 0.487 0.019 0.026 0.0145 0.0111 0.0108 

Transcription regulator HTH, LysR 0.01397 0.07486 0.5619 0.0275 0.0365 0.0237 0.0238 0.0238 

Winged helix-turn-helix DNA-binding domain 0.01287 0.06896 0.6308 0.115 0.125 0.115 0.117 0.113 

WD40/YVTN repeat-like-containing domain 0.01258 0.06741 0.6983 0.0476 0.0397 0.047 0.0304 0.0217 

WD40 repeat 0.01199 0.06423 0.7625 0.0301 0.0241 0.0302 0.0128 0.011 

Similarity percentage analysis of IPR shifts in abundance between the different groups of samples according to the relative frequency of S. 

aureus. The first collumn identifies the IPR explained by that row, the second collumn represents the average of dissimilarity the third collumn 

shows the % dissimilarity explained by that IPR, the fourth column is related to the cumulative Bray-Curtis dissimilarity metric for the IPR thus far 

represented in the table and the last five show mean abundance of group A (0-1%), B (1-2%), C (2-5%), D (5-10%) and E (More than 10%). 
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Observing SIMPER results from tables 20, 23, 26 and 29, there are four IPRs that are 

common in all, or almost all, SIMPER ranks: Transposase, L1 (IPR004244); Transposase, mutator 

type (IPR001207); TonB-dependent receptor, beta-barrel (IPR000531); and EAL domain (IPR001633). 

Transposase L1 is an enzyme that coworks with Long Interspersed Nuclear Elements (L1s), 

one of the most abundant retrotransoposons in the human genome (Moran, 1999).   

The fact that L1 transposase is one of the results that most contributes to the dissimilarity of 

the samples may indicate the possibility that some of the samples are from patients who, due to a 

mutation, developed a propensity for AD. Even though group D and E had lower abundances of L1 

transposases and we know that samples from D and E may be from people with AD, some of the 

other samples are from people with AD but clearly are not in a flare state. For fundamental 

conclusions, there should be a deeper research into this topic. 

In fact, L1 retrotransposons and their ability to promote deleterious insertions lead to their 

identification as causal agents of disease in 1988. Since then, many scientists found that deleterious 

L1 insertions occasionally cause genetic disorders (Moran, 1999). However, most of L1s are inactive 

and uncapable to cause insertional mutagenesis (Ostertag et al., 2015). 

“Transposase, mutator type” is an enzyme encoded by autonomous mobile genetic elements 

such as transposon or insertion sequences (IS). Curiously, there is an insertion sequence, Is256 that 

has been detected in the genome of several clinical isolates in the clinical methicillin-resistant S. 

aureus (Schreiber et al.,2013).  

Since one of the main goals of this study was to detect what are the dissimilarities between 

microbial communities, according with increasing abundances of S. aureus, this may reflect that there 

are some S. aureus more resistant to antibiotics than others. Of course this conclusion is just an 

assumption and in order to have a more precise answer for the reason why Transposase, mutator 

type is one of the most differentianting IPRs among groups, a deeper research into metabolic 

dynamics would be needed. 

 EAL domain is found in several bacterial signaling proteins and it has been proven that is 

involved in the degradation of a second messenger, cyclic di-GMP (Krasteva et al., 2012). Cyclic di-

GMP is an important second messenger that is involved in the regulation of bacterial life-style 

transitions relevant for biofilm formation and virulence. The three main domains that are involved with 

cyclic di-GMP are: EAL, GGDEF and HD-GYP (Pesavento & Hengge, 2009). The GGDEF domain 

(IPR000160) is also in the top 10 results of SIMPER analysis of Pc and according to the literature, 

controls the synthesis c-di-GMP (Römling & Amikam, 2006). Usually, the levels of c-di-GMP are 

associated with the ability of adaptational capacities of the bacteria. A higher level of c-di-GMP is 

synonym of a good capacity of biofilm formation, however a low level of c-di-GMP promotes biofilm 

dispersion and bacterial virulence. Frequently, opportunistic pathogens among the Gram-negative 

bacteria display a high level of c-di-GMP because of their need to adapt to different 

microenvironments (Krasteva et al., 2012). The SIMPER results reveal lower proportions of the 

GGDEF domain in the D and E groups, suggesting that the capacity of the skin microbiome to form 

biofilms under c-di-GMP regulation has been disrupted to some extent, probably due to the much 
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lower representativeness of Gram-negative bacteria in these samples, a group that is widely known to 

govern biofilm formation thorugh c-di-GMP. 

 

Figure 28 | Schematization of the roles of Cyclic di-GMP and the relationship with EAL, GGDEF and HD-GYP. Cyclic di-

GMP is an important second messenger that is involved in the regulation of bacterial life-style transitions relevant for biofilm 

formation and virulence. The three main domains that are involved with cyclic di-GMP biosynthesis are: EAL, GGDEF and HD-

GYP. GGDEF and the other two main domains are responsible for, respectively, synthesis and degradation of c-di-GMP in 

Gram-negative bacteria (Sondermann, Shikuma, & Yildiz, 2012). 

 However, a recent study on GGDEF and EAL domains and its relationship with c-di-GMP 

demonstrated that GGDEF protein GdpS, from Staphylococcus epidermidis, is able to regulate biofilm 

formation in S. epidermidis even independently of c-di-GMP (Zhu et al.,2017). It is still unclear whether 

such regulatory mechanism is valid for S. aureus, and how this ability can be affected by the 

microenvironment. The overall decrease in GGDEF and EAL domains in samples with high S. aureus 

percentages indicates that the genetic make-up of the skin microbiome is shifting towards a more 

virulent state given the overall inverse relationship between biolfim formation and virulence (Figure 

28). Relating this information and the results of SIMPER, there is evidence that there will be samples 

with high or low levels of c-di-GMP, since EAL domain has a high contribution for the dissimilarity 

between samples. As mentioned above, the Gram-negative vs. Gram-positive abundances within 

each sample group from A through E are likely to interefere with this outcome.  

TonB-dependet receptors (TBDRs), beta barrel are proteins located in the outer membrane of 

Gram-negative bacteria and have an important role in nutrient transport, such as iron, an essencial 

micronutrient for bacteria (Mosbahi et al.,2018). They act as pathways in response to outside ligands 

and import extracellular nutrients into periplasmic space (Wang et al., 2016).  

During pathogenesis, the nutrient transport becomes a way of interaction between pathogen 

and host, which is a critical determining factor in the outcome of infection. As an immune response to 

the pathogen, hosts limit the availability of iron acquisition (Wang et al., 2016) (Mosbahi et al., 2018). 

However, to overcome the lack of iron, Gram-negative bacteria produce iron uptake systems that 

capture iron-containing substrates, such as siderophores. The binding of siderophore to TBDRs 
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triggers some mechanisms allowing translocation of the iron into the cytoplasm (Mosbahi et al., 2018).  

 After the analysis of SIMPER IPR ranks it was verified that along with the increase of 

percentage of S. aureus in the samples there was a decrease in abundance of TonB-dependent 

receptors, beta barrel. It makes sense since with the increase of S. aureus abundance, there is a 

decrease of microbiome diversity, namely of diverse Gram-negative bacteria, such as P. acnes and 

several others, and as a result this mechanism typical of virulent Gram-negative bacteria is less 

represented in sample groups D and E. 

3.4 Analysis of S. succinus genomes 

After linear regression analysis was carried out, based on the results obtained previously 

using the SIMPER test, a strong and positive correlation between S. aureus and S. succinus was 

revealed.  

Until now, there is no information about the precise molecular interactions, eventual syntrophic 

behaviour and niche partitioning underlying the relationship between S. aureus and S. succinus in the 

human skin. Therefore, to explore the above mentioned issues making use of currently-available 

genomic information a comparative analysis of four S. succinus genomes with one genome 

representing a multi-resistant S. aureus strain was carried out using the freely-avialable server RAST. 

The strains used for the comparison were, S. aureus USA300 and S. succinus SNUC1280, 14BME20, 

DSM15096 and DSM14617.  

3.4.1 Comparison of the genomes 

The RAST sever provides some general data about the species under analysis. An overview 

of the general genomic attributes of the five strains inspected is listed below (Table 31).  

Table 31 | Comparison of size, GC content, subsystem coverage, numbers of coding sequences, RNAs and 

subsystems of strain S. aureus USA300 and strains of S. succinus: SNUC1280, 14BME20, DSM15096 and DSM14617. 

Values available on RAST.  

 USA300 SNUC1280 14BME20 DSM15096 DSM14617 

Size (bp) 2 917 469 2 771 412 2 745 675 2 871 374 2 786 115 

GC – content (%) - 32.9 33.1 33 32.9 

Number of Contigs 4 173 1 169 339 

Number of Subsystems 385 406 409 405 406 

Subsystem Coverage (%) 59 53 53 51 53 

Number of Coding Sequences 2608 2623 2586 2751 2624 

Number of RNAs 105 73 80 72 67 

 

From this organisms’ overview, it is possible to observe that S. aureus USA300 had slightly 

larger genome size (2 917 469 bp), subsystem coverage (59) and number of RNAs (105) than the S. 

succinus strains. Although it has the highest subsystem coverage, the number of subsystems (385) is 

lower than the average of subsystems in S. succinus (~407).  
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Between S. succinus strains, DSM15096 had the largest genome size (2 871 374bp), also the 

highest number of coding sequences (2751), however not the highest number of RNAs. The number 

of subsystems did not vary much. 

Posteriorly, alignments based on aminoacid sequence homologies inferred from the 

corresponding genome sequences of Staphylococcus aureus (MRSA – Methicillin-resistant 

Staphylococcus aureus) strain USA 300 and Staphylococcus succinus strains 14BME20, DSM14617, 

DSM15096 and SNUC1280 were performed (Figure 29). The alignments were executed in the RAST 

server using the “sequence-based comparison” tool with the aim of a general and faster analysis to 

reveal possible similarities between S. aureus and S. succinus.  

 

Figure 29 | Sequence-based, genome-wide alignment between the multi-resistant Staphylococcus aureus (MRSA) 
strain USA 300 and Staphylococcus succinus strains 14BME20 (outermost ring), DSM14617, DSM15096 and SNUC1280 

(innermost ring). Alignments were performed on RAST based on aminoacid sequence homologies inferred from the 

corresponding genome sequences. Several genes are common to S. aureus and S. succinus strains, but usually they display 

only moderate levels of aminoacid sequence homology. 

Observing the alignment, although there are several genes in common between S. aureus 

and S. succinus, they exhibit only moderate levels of aminoacid sequence homology. 
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3.4.2 Comparison of the Subsystem Feature Counts 

Since the number of subsystems and subsystem coverage differs between S. aureus USA300 

and all strains of S. succinus SNUC1280, 14BME20, DSM15096 and DSM14617, and in order to 

understand which are the differences, Table 32 displays the 27 main substystems provided by RAST.  

Table 32 – Comparison of the total number of genes in each of the subsystems of S. aureus USA300 and strains of S. 

succinus: SNUC1280, 14BME20, DSM15096 and DSM14617. Values available on RAST. The values in bold are the ones 

representing the largest variations between S. aureus and S. succinus strains.  

Subsystem USA300 SNUC1280 14BME20 DSM15096 DSM14617 

Cofactors, Vitamins, Prosthetic groups, Pigments 216 183 189 192 185 

Cell Wall and Capsule 125 95 104 100 96 

Virulence, Disease and Defense 97 79 56 62 95 

Potassium metabolism 20 10 5 10 10 

Photosynthesis 0 0 0 0 0 

Miscellaneous 48 26 34 27 27 

Phages, Profages, Transposable elements, plasmids 26 9 15 11 17 

Membrane Transport 71 28 29 32 25 

Iron acquisition and metabolism 53 27 28 26 26 

RNA metabolism 148 115 126 114 119 

Nucleosides and Nucleotides 107 85 89 89 86 

Protein Metabolism 205 204 206 205 201 

Cell Division and Cell Cycle 38 27 42 29 27 

Motility and Chemotaxis 1 0 0 0 0 

Regulation and Cell signalling 85 38 41 39 40 

Secondary Metabolism 7 4 4 4 4 

DNA Metabolism 102 78 70 88 74 

Fatty acids, Lipids and Isoprenoids 99 118 110 106 108 

Nitrogen Metabolism 20 9 10 21 9 

Dormancy and Sporulation 9 9 9 9 9 

Respiration 40 32 35 33 33 

Stress Response 85 77 74 75 80 

Metabolism of Aromathic compounds 4 11 11 10 10 

Amino Acids and Derivatives 327 327 334 325 324 

Sulfur Metabolism 15 27 27 27 28 

Phosphorous Metabolism 22 32 31 35 33 

Carbohydrates 272 343 337 350 351 

 

S. aureus and S. succinus share several genes across all RAST subsystems except in 

subsystem Motility and Chemotaxis, although here the difference between the strains is negligible. 

Although they share the same subsystems as expected, there are some fluctuations between the 

number of genes. The number of genes varies more in the following subsystems: Virulence, Disease 

and Defense; Membrane Transport; Iron Acquisition and Metabolism and Carbohydrates.  
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Regarding the subsystem Virulence, Disease and Defense, there is a difference between S. 

aureus and S. succinus and even between S. succinus strains. S. aureus has 97 genes in this 

subsystem and S. succinus 14BME20 has 56 genes. The strain of S. succinus that has more genes is 

SNUC1280 (79). The other three subsystems reveal that there is a substancial difference between S. 

aureus and S. succinus strains, however within S. succinus strains there is no significant diference. 

3.4.2.1 Comparison of the subsystem Virulence, Disease and Defense  

 Since, in the previous comparison, it was found that there is a substantial difference between 

S. aureus and S. succinus and even between S. succinus strains in the subsystem of Virulence, 

Disease and Defense, deeper research was made into this subsystem. The genes from this 

subsystem are divided in subgroups in Table 33.  

Table 33 | Comparison of genes from the subsystem Virulence, Disease and Defense of S. aureus (USA 300) and four 

S. succinus strains (SNUC1280, 14BME20, DSM15096 and DSM14617). Values available at RAST server.  

Strain USA 300 SNUC1280 14BME20 DSM15096 DSM14617 

Virulence, Disease and Defense 97 79 56 62 95 

Adhesion 

Total 23 1 1 1 1 

Adhesins in Staphylococcus 23 0 0 0 0 

Streptococcus pyogenes 

recombinatorial zone 

0 1 1 1 1 

Toxins and 

superantigens 

Total 0 0 0 0 0 

Bacteriocins, 

ribosomally 

synthesized 

antibacterial 

peptides 

Total 6 10 10 10 10 

Bacitracin Stress Response 6 4 4 4 4 

Colicin V and Bacteriocin 

Production Cluster 

0 6 6 6 6 

Resistence to 

antibiotics and 

toxic 

compounds 

Total 59 56 33 39 72 

Methicillin resistance in 

Staphylococci 

28 22 0 0 23 

Copper homeostasis 2 2 2 3 6 

Bile hydrolysis 2 2 2 2 2 

Cobalt-zinc-cadmium resistance 6 3 4 4 6 

Multidrug Resistance, 2-protein 

version Found in Gram-positive 

bacteria 

3 3 3 3 3 

Mercuric reductase 2 2 2 4 3 

Mercury resistance operon 1 1 1 2 2 

Aminoglycoside 

adenylyltransferases 

0 0 1 0 0 

Teicoplanin-resistance in 

Staphylococcus 

4 3 5 3 3 

Resistance to fluoroquinolones 4 4 4 4 4 

Arsenic resistance 3 5 5 9 11 

Fosfomycin resistance 1 0 2 1 0 
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Copper homeostasis: copper 

tolerance 

0 2 0 2 2 

Beta-lactamase 1 1 1 1 1 

Cadmium resistance 0 2 0 0 5 

Resistance to chromium 

compounds 

0 1 1 1 1 

Multidrug Resistance Efflux 

Pumps 

2 3 0 0 0 

 

The main difference between S. aureus and S. succinus strains is in the subgroup of 

adhesion. S. aureus has 23 genes referred to Adhesins in Staphylococcus and S. succinus strains do 

not have any gene. Secondly, whereas all S. succinus strains are potentially able to produce 

bacteriocins, this gene cluster was not found in multi-resistant S. aureus USA300. Altogether, these 

results suggest that, while S. aureus may be a more competent skin/host colonizer thorugh the action 

of adhesins, S. succinus may possess the ability to outcompete other bacteria in the skin microbiome 

through the biosynthesis of bacteriocins. Provided that S. aureus strains can cope with bacteriocin 

production by S. succinus (what is thus far not clear), both strains could engage in a synergistic 

interaction where S. aureus modifies the physical-chemistry of the skin microbiome favouring both 

strains to thrive (given their similarities, for instance, in nutrient acquisition) whereas S. succinus 

deters growth of potential competitors through the biosynthesis of inhibitory secondary metabolites. 

Such hypotheses must be addressed in the future through dedicated studies if we are to illuminate the 

positive relationships usually observed among Staphylococcus species during the emergence of AD.  

Further, a subsystem in which several differences between S. succinus and S. aureus strains 

were found was “Resistance to antibiotics and toxic compounds”. There are genes of Metchicilin 

resistance in Staphylococci in strains SNUC1280 and DSM14617 but the other strains have no genes. 

In summary, although there were many similarities between the genomes of both species, 

suggesting they are able to explore similar microniches, there were also conspicuous diferences 

between them regarding the subgroup of genes reffered to adhesion, bacteriocin production (only 

undertaken by S. succinus strains) and resistance to antibiotics and toxic compounds. 
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Conclusion 

The aim of this study was to address the relationship between Staphylococcus aureus 

abundance and shifts in the structure of the human skin microbiome, with implications to our 

understanding of Atopic Dermatitis (AD), using a metagenomic approach. To this end, three datasets 

collected from EBI-Metagenomics (MGnify) database were analysed to deliver do Phylum-level 

Abundance profiles, OTU-level Taxonomic profiles and Functional (IPR) profiles of the human skin 

microbiome across gradients of S. aureus abundance in the samples, a major indicator of the 

emergence of AD flares in skin. The datasets had samples collected from Antecubital (Ac), Popliteal 

(Pc) Creases and Volar forearm from patients with Atopic Dermatitis in several stages.   

Phylum Taxonomic Abundance analysis demonstrated that the most abundant phyla were: 

Actinobacteria, Firmicutes, followed by Proteobacteria and Bacteroidetes, reflecting what is referred to 

in the literature (Kong, 2012). In order to understand the relationship between S. aureus and the 

microbial community, the response of phylum taxonomic abundances according to the percentage of 

S. aureus in the Ac, Pc and Vf samples were evaluated.  The samples were divided in five groups 

according to the percentage of S. aureus: A (0-1%), B (1-2%), C (2-5%), D (5-10%) and E (≥10%). 

This analysis demonstrated that, although the major phyla were the same, there were significant 

dissimilarities in relative frequency between Ac, Pc and Vf samples and also, that increases in the 

relative abundance of S. aureus (Firmicutes) induces a decrease in all other phyla, and therefore, a 

reduction of microbial diversity.  

Taxonomic analysis reveald that the microbiome of samples with the same relative abundance 

of S. aureus were more similar to one another than those with lower S. aureus abundances, revealing 

convergence in structure and reduced complexity in skin microbiomes with high S. aureus incidence, 

as expected. Through multivariate statistics using Principal Coordinates Analysis (PCoA) formation of 

clusters along with the percentage of S. aureus in the samples was examined. Since the ordination 

diagrams obtained from the PCoAs did not allow for a clear visual distinction between sample groups, 

a One-way PERMANOVA tests were necessary to precisely test for significant differences in skin 

microbiome structure among the studied groups. There were statistical significant dissimilarities 

between all areas, and within areas also except for group A and B in Ac, between group E and A, B 

and C in Pc and between group B and C in Vf. These results reinforce the fact that the bacterial 

community varies not only between sites but also according to the abundance of S. aureus. To identify 

the bacterial taxa that contribute to the major dissimilarities between the microbiomes according to site 

of origin or different abundances of S. aureus, SIMPER tests were performed at the OTU (Operational 

Taxonomic Unit) level. After identyfing the major taxa that contributed to the dissimilarity of the 

microbiome, it was sought to understand if there would be any correlation with S. aureus. It was found 

that there were positive correlations between S. aureus and Staphylococcus sp., S. succinus and S. 

epidermidis. S. succinus was a surprise since it demonstrated the better regression coefficient and it 

was never metioned before in skin disorders and with S. aureus. Propionibacterium acnes, 

Corynebacterium spp., Streptococcus spp., among others, demonstrated in almost all cases that in the 

presence of a higher abundance of S. aureus there is a decrease to low or null abundance levels of 
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these species. Some execptions, relatively to Corynebacterium spp., were identified in samples from 

Ac and in Vf samples, P. acnes demonstrated a negative linear correlation with S. aureus. 

For Functional analysis at the IPR level, the same multivariate analysis and tests mentioned 

above were performed. Scatter plots derived from PCoA were inconclusive, since the samples were 

very dispersed. Results from One-Way PERMANOVA test were more conclusive and revealed that 

there was no significantly difference in functional profiles across skin sites or S. aureus abundance 

groups, only between Ac and Vf and group A and B, considering all the samples. Within the Ac site, it 

was demonstrated that groups B and C were too similar; there were also no significant differences 

between groups B and D, E and A, B, C and D in Pc samples; and for Vf there were no significant 

between A and B, C and group B with C and D and finally with group E, C and D. To rank all IPRs that 

contributed the most for the total variation of the dataset, SIMPER analyses were performed revealing 

four IPRs that were common in all analyses undertaken for differences among S. aureus abundance 

groups: Transposase, L1; Transposase, mutator type; TonB-dependet receptor, beta-barrel; and EAL 

domain. All of these IPRs are related to pathogenesis factors that may contribute to AD or responses 

to pathogenesis at different degrees. 

Lastly, after the comparison of S. succinus and S. aureus genomes it is possible to conclude 

that although there are several genes in common between these species, these genes exhibit only 

moderate levels of aminoacid sequence homology. There are significant diferences between the 

number of genes classified in the subsystem Virulence, Disease and Defense, more precisely genes 

related to adhesion, bacteriocin production and resistence to antibiotics and toxic compounds. 

In conclusion, although it is already being recognized the importance of the study of the 

relationship between S. aureus and other microorganisms, further research is needed particularly to 

elucidate its relationship with other Staphylococci during AD emergence, and whether or not these 

species act as disease causing agents or their increased frequency is a consequence of a physico-

chemically altered skin microniche under AD. The field of metagenomics is improving, and has been 

demonstrating a huge potential in addressing diseases from the taxonomic and functional standpoints. 
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